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CHAPTER 1

Quantifying Complex Behavioral Phenotypes

1.1. Introduction

Patterns of  movement in humans can reveal much about an individual’s health, age, and cogni-

tion. Many internal processes involved in producing coordinated muscle control leave distinct,

observable traces at the organismal level. A trained observer can pick out diverse signals that

communicate the internal state of  the organism. For instance, a limp can indicate a sprained an-

kle or a persistent tremor might indicate Parkinson’s Disease1. Importantly, certain neurode-

generative diseases have unique physical hallmarks, suggesting that characterization of  specific

movement patterns could be a key to detecting and revealing the progression of  diseases in

biological organisms1,2. The complete catalog of  phenotypic signatures would be invaluable

for diagnosing diseases earlier, for furthering basic biological research, and for quantifying

efficacy and side-effects of  current medical treatments.

Although there are many examples of  relating a phenotype to its underlying biological

causes, generating a complete catalog of  human movement phenotypes is currently infeasible.

Motor control involves billions of  specialized cells chattering with one another using electrical

and chemical signals. Counting the number of  cells in a human is nearly impossible, and even

if  it were feasible, a complete picture would become exponentially more complex when the

dynamical aspects of  motion and signaling are considered. Large-scale undertakings of  this
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nature never start with humans. We are far too complex. Instead, our approach to fully map

an entire behavioral repertoire must start with a simpler organism, such as Caenorhabditis elegans.

The nematode, C. elegans, was selected as a model organism specifically to study the genetic

basis for behavior. In the early 1960’s, Sydney Brenner was searching for a multicellular or-

ganism that was amenable to genetic analysis, easily cultivated, had a short lifespan, was small

enough to be handled in large numbers, and had relatively few cells to facilitate exhaustive

studies of  lineage and pattern formation. He and his lab tested nearly 60 worm species before

deciding on C. elegans. This choice would result in three members of  the lab winning a Nobel

prize. Over 15 years, White, Southgate, Thomson, and Brenner segmented the 1 mm long

worm into 20,000 razor thin slices, imaged the slices using electron microscopy, and recon-

structed a nearly complete map of  the worm’s 302 neurons, 5000 chemical synapses, 2000

neuromuscular junctions and 600 gap junctions3. Meanwhile, Sulston, Schierenberg, White,

and Thomson created the first complete cell lineage map for an entire organism by manually

tracking and recording the divisions needed to create the adult hermaphrodite’s 959 somatic

cells4. In 1998, C. elegans was the first metazoan to have its genome sequenced by the team

that would later complete the Human Genome Project5. To this day, C. elegans is unparalleled

among multicellular model organisms in its depth of  cellular characterization.

C. elegans also showed rich variation in behaviors. In normal conditions, the worms move

using a sinusoidal, elegant, snake-like gait. Brenner, hoping to find the genetic roots of  this

behavior, exposed worms to a mild mutagen and meticulously evaluated the worm’s offspring

for visible phenotypes. By 1974, he had discovered over 100 genes that caused noticeable
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behavioral phenotypes. He classified the behavioral variants into categories such as ‘uncoor-

dinated’, ‘kinker,’ ‘coiler,’ ‘shrinkers,’ ‘loopy,’ ‘slow,’ and ‘sluggish’ and used the phenotypes

to trace the gene defects to disruptions in nervous system’s development, nervous system

function, or musculature development6.

Today, behavior phenotypes are a cornerstone of C. elegans research. The discovery that

viable worms could be frozen, stored, and thawed has led to the establishment of  a vast frozen

library of  genetic variants (the Caenorhabditis Genetics Center7,8), which makes them reusable

for researchers everywhere. Furthermore, the formalization of  phenotype descriptors (the

Worm Phenotype Ontology9) currently lists over 1,880 phenotypic categories (including sub-

categories) and 56 movement variants. The study of  behavior has lead to a wealth of  discover-

ies such as the neurons and neurotransmitters responsible for forward and backward crawling,

the role of  serotonin and dopamine in switching between gaits, and the strategies used by C.

elegans to seek out desirable conditions.

There is, however, still a wide range of  details about the worm’s behavior that remain elu-

sive: How is rhythmic movement generated10? Does a worm have discrete behavioral states11?

How do the dynamics of  locomotion change during aging10? At the most fundamental level,

85% of C. elegans’ 20,000 genes still have no detectable phenotype with RNAi knockdown

in standard laboratory conditions12. This number is massive, even considering inconsistent

RNAi penetration. A lack of  detectable phenotype could arise due to three primary reasons:

the genes are redundant or non-essential, indicating that there truly is no observable pheno-

type related to those genes; the genes are context-dependent and would exhibit a phenotype

under other observation conditions; or the current means of  detecting phenotypic differences
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are not sensitive enough. Our approach has been to tackle the last consideration because it

stands to reason that the experimental methods, detection tools, and analysis algorithms we

use are directly responsible for how many distinct phenotypes we can detect and categorize.

Indeed, it has been shown that machine vision allows for the detection of  phenotypes not

discernible by the human eye13,14. Furthermore, new technological advances in the ability to

quantify and record phenotypes have consistently led to the detection of  new phenotypes in

widely used strains13,15. Separate defects in the same signaling pathway have been shown to

produce similar phenotypes13,14. The greater our ability to collect phenotypic information,

the better we can parse fundamental biological processes.

Collecting behavioral data with better spatial and temporal resolution, however, does not

necessarily make it easy to find differences in behavior. Behavioral analyses depend on the al-

gorithms and computational methods used to extract key pieces of  information. Researchers

have consistently invented new ways to calculate aspects of  a worm’s behavior including: how

to interpret the worm’s body posture16–18 and how to quantify transitions between different

behavioral states11,19. In fact, as data collection tools are becoming more advanced, the com-

putational tools for behavioral analysis are beginning to play a larger role in understanding

those phenotypes. Mathematical modeling allows us to propose and test mechanisms that

might have generated an observed behavior. We increase our ability to characterize even more

of  the molecular and cellular processes inside the worm by increasing the number of  pheno-

typic categories that can be reproducibly recognized and interpreted. This process draws us

closer to creating a complete catalog of  an organism’s behavioral phenotypes.
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1.2. Objectives

The primary goal of  my Ph.D. is to quantify and mathematically model the dynamics and

individual variability of  complex behavioral phenotypes, specifically for movement and re-

production in C. elegans. Movement is one of  the most varied and visually striking behaviors;

reproduction is one of  the most critical. In both cases, the dynamic information offers key

insights into the ‘logic’ of  biological processes that create behaviors. Furthermore, the vari-

ability between individuals reveals key ‘decisions’ that can lead an individual to experience one

of  several different states.

During my graduate studies, I have worked as a biologist, an engineer, a software developer,

and a data scientist. I have manually raised worms and counted eggs; I have assembled the

cameras and built a visual tracking system for movement data; I have built a software system to

generate highly descriptive information about individual animals, and I have written analysis

packages to analyze and visualize the behavioral changes of C. elegans. These roles are reflected

in different chapters of  this thesis. In Chapter 2, I explain the software system I developed for

collecting long behavioral recordings of C. elegans in a high-throughput manner. In Chapter 3,

I discuss the state of  the art for C. elegans movement and behavioral analysis and describe how

I have attempted to create a mathematical framework for analyzing phenotypes. In Chapter 4,

I show how the mathematical modeling of  dynamic egg-laying data can be used to tease apart

how an organism responds to environmental stress. My conclusions are in chapter 5.
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1.3. A Philosophy for Computational Modeling.

The ability to find and interpret subtle behavioral differences are limited by two interrelated

pieces: the ability to measure the behavior and the mathematical analysis. Both of  these steps

are fundamentally linked. As an active member of  both the Morimoto and Amaral labs, I was

in the unusual situation in that I was able to design experiments and methods of  collecting

data specifically with the goal of  modeling the phenotype mathematically.

I would examine the literature about a particular phenotype, either reproductive system

or movement. This knowledge would give me a better idea of  a reasonable mathematical

approach to better understand the process. Usually, this type of  data is manually intensive

to collect. Often, I would have to create tools or methods to collect it with the help of  my

mentors, other graduate students, research assistants, and post-doctoral researchers. I have

repeated this process of  cycling from mathematical model, to design of  data collection, to

running experiments several times during my graduate studies.

As an incoming graduate student, my first project involved quantifying and modeling the

worm’s reproductive system (chap 4). It started when I was tasked with finding a sensitive phe-

notypic readout for examining the effects of  prolonged exposure to a mild temperature stress

for a collaboration between Rick Morimoto, Luis Amaral, and Ilya Ruvinsky at U. Chicago.

After examining movement, transcriptional response, and lifespan, I honed in on the most

sensitive phenotypic readout: egg laying.

When a senior graduate student, Pat McMullen, and I realized how analogous the means

of  egg development, fertilization, and laying were to steps in an assembly line for oocytes, it

became clear that the dynamic data of  egg laying timing would be the most informative means
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to construct the model. I then set out to create a method to collect this data. The process

could not be easily automated, and a post doc from U. Chicago, Erin Aprison, and I manually

counted over 10,000 eggs. This data allowed us to construct and test the mathematical model

we had developed. Furthermore, the sheer quantity of  animals we used for the experiment

exposed the possibility of  a controlled switch that some animal’s use to stop egg laying under

stress conditions.

As that project came to a close, I became increasingly interested in the intricate movement

patterns created by worms crawling around the plate. At the time, the Morimoto lab used

movement to study the health of  animals with increased levels of  protein misfolding and ag-

gregation. The two most prominent movement metrics were the average speed of  crawling or

the frequency of  body bends while swimming. While both measures are useful, there seemed

to be so much unutilized information contained in the worm’s movement patterns that could

lead to a more intricate profile of  animal’s behavior. There had to be a stronger, more sensitive

way to link the health of  the animals to how they moved. Rick and Luis agreed, and I began

to construct a system for quantifying healthspan.

I surveyed all existing multi-worm tracking systems and assembled the most promising

candidate. A visiting post doc and a lab tech, Andreia Teixeira-Castro and Renee Brielmann,

collected hundreds of  recordings of  aging wild type animals. However, when another post-

doc, Andrea Lancichinetti, and I ran an analysis; the system was unable to detect types of

behavior I envisioned or provides us the type of  discriminatory power required for healthspan

analysis. To overcome this challenge, I worked with a grad student and software developer,

Nicholas Timkovich and Helio Navarro, to write a software extension to correct the trackers’
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flaws (chapter 2). Our extension allowed us to track animal identities for long periods of

time and thus generate much better statistical power for each animal’s behavioral traits, fit

more complex behavioral models, and to dissect long-term shifts in behavior. After collecting

data with our improved system, I returned to the analysis that Andrea and I had performed

previously to collect and analyze more detailed behavioral metrics for the animals (chapter 3).

I am excited to see how researchers will uncover many more aspects of  behavior are as these

techniques for behavioral analysis are applied to study stress, diet, reproduction, therapeutics,

and diseases.
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CHAPTER 2

Discerning Individual Worms in a Free-Moving Population

The work in this chapter is submitted for publication and was completed with significant help

from Renee Brielmann, Nicholas Timkovich, Helio Navarro, Andreia Teixeira-Castro, Richard

Morimoto and Luis Amaral

2.1. Abstract

The study of C. elegans has led to ground-breaking discoveries in gene function, neuronal cir-

cuits, and physiological responses. Subtle behavioral phenotypes, however, are often difficult

to measure reproducibly. We have developed an experimental and computations infrastructure

to record and analyze the physical characteristics, movement, and social behaviors of  dozens

of  interacting free-moving nematodes. Our algorithm implements a directed acyclic network

that reconstructs the complex behavioral trajectories generated by individual C. elegans in a free

moving population by chaining hundreds to thousands of  short tracks into long contiguous

trails. Our system enables us to demonstrate that short-duration observations yield conflicting

experimental results. Irreproducible results can be avoided by recording more individuals, in-

creasing statistical power, over longer observation periods, increasing accuracy. The graphical

interface we developed will enable researchers to uncover, in a reproducible manner, subtle

time-dependent behavioral phenotypes and to better dissect the molecular mechanisms that

give rise to organism-level behavior.
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2.2. Introduction

A major challenge of  translational biological research is to discover how molecular, cellular, and

tissue level mechanisms give rise to an organism’s actions and behaviors. In humans, changes

in behavior, such as motility, can reveal age and disease associated decline commonly associated

with healthspan2. Model organisms such as nematodes3, flies20, zebrafish21, and mice have

yielded tremendous insights into relevant cellular and molecular-level processes. However,

behavioral data can often be time-consuming to collect, is highly variable across individuals, is

subject to a wide range of  relevant time-scales, and can be difficult to reproduce. Our ability to

relate unconstrained behavioral phenotypes to underlying biological processes is limited by our

tools for acquiring large numbers of  long, high-resolution recordings. Increasing the reliability

and resolution of  phenotypic characterization will ultimately result in a greater understanding

of  the molecular processes inside an organism.

The nematode Caenorhabditis elegans is an ideal model organism for integrating molec-

ular information with complex phenotypes: we can control its environment and a wealth

of  molecular, genetic and genomic, and tissue-level information is available to contextualize

healthspan22–24. Movement analysis in C. elegans has already been utilized to discover and map

many of  the neuronal and genetic components in pathways related to environmental stim-

ulus and response, as well as innate behaviors25–28. Nevertheless, worms have been shown

to exhibit a high degree of  individual variation in movement-related behaviors that range in

duration from fractions of  a second29, to minutes11, hours30, days31, or weeks32. Quantifying

how individuals differ from one another during long-term behavioral changes is critical for

quantifying healthspan, yet it remains difficult to perform using current tools.
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A diverse set of  manual scoring23 and computer vision tools including single worm track-

ers13,16,33,34 and multi-worm trackers35–38 have been developed to quantify all aspects of C.

elegans behavior and motility. Single-worm trackers are capable of  following an individual for

an extended period of  time and are well suited for quantification of  specific movement phe-

notypes such as switching between behavioral states11,39, changes in body posture16,40, or the

frequency of  reorientation events41. However, when tracking a single worm, there is a trade-

off  between the length of  time each individual is tracked and the number of  individuals that

can be feasibly quantified. Researchers must, therefore, choose between long recordings of

individuals to capture slow behavioral changes or recording shorter tracks for larger numbers

of  animals.

Because of  this trade-off, a tracking program that follows many animals at once seems to

be a natural choice for tracking individual differences over long periods of  time. Increases

in throughput, however, often come at a price: lifespan can be monitored by sacrificing the

time-resolution required to follow an animal’s trajectory32, trajectories can be captured by sac-

rificing the resolution to track the posture of  animals38, and body-postures can be captured

by constraining motion of  animals in a microfluidics environment42. Of  the diverse set of

multi-worm trackers, we employed the Multi-Worm Tracker (MWT)35 because it can capture

both the trajectories and body-postures of  tens of  animals in an unconstrained environment.

Furthermore, by tracking animals in real-time it can capture recordings using a sub-second

frame rate that lasts up to a day. A primary weakness of  MWT, however, is an inability to

sustain the identities of  animals through collisions and imaging errors. This prohibits the
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analysis of  communication between individuals, prevents the detection of  persistent individ-

ual differences, and reduces the accuracy with which each animal can be characterized. This

problem, however, is not only widespread among multi-worm trackers but is also common

when visually tracking larger animals.

A new approach to tracking multiple animals, pioneered by the idTracker43, involves train-

ing a computer vision system to recognize the idiosyncratic features of  each animal. This has

proved remarkably successful for animals with identifying features, some of  which may be

apparent to human observers (Fig. 2.1), and some that may not. However, animals such as C.

elegans, at any particular age, are essentially identical, which, when coupled with the relatively

low resolution required for tracking a large number of  animals, results in a complete lack of

detectable differences in appearance (Fig. 2.1b,c).

The two major challenges in the simultaneous tracking of  multiple C. elegans for long peri-

ods of  time are: (i) accurately resolving animals from the background, and (ii) maintaining the

identity of  animals as they move and collide. Resolving the former is almost always performed

with background subtraction, a common computer vision technique that defines clusters of

adjacent pixels, typically denoted as ‘blobs’, that can be organized sequentially to form ‘tracks’.

Background subtraction, however, is not sufficiently robust against numerous conditions,

including variations in lighting and the spurious background features present while tracking C.

elegans on a bacterial lawn (Fig. 2.1c). Limitations in background subtraction can cause multiple

types of  errors including false positives, false negatives, and distorted shapes (Fig. 2.1d). All of

these errors increase the difficulty in maintaining animal identity over the course of  a recording.
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The greatest difficulty in retaining an animal’s identity results from direct physical inter-

actions among animals. For example, in an experiment following 10 animals for three hours,

the Multi-Worm Tracker35 identifies 1,750 separate tracks of  which only 15% of  the tracked

objects move a distance greater than a single body length (Fig. 2.1e). To maintain identity over

time we must simultaneously solve both the background subtraction and interaction problems.

The multiplicity of  tracks for a single worm makes it impossible to identify how an animal’s

behavior changes over time. The correct assignment of  which tracks belong to a single worm

as it moves among others would therefore resolve this dilemma. The ability to rapidly collect

long, high-resolution recordings for many individuals would enable the reproducible detection

subtle behavioral phenotypes.

Here, we describe the Worm Analysis and Live Detailed Observation (WALDO) algorithm

that significantly reduces the cost of  phenotyping many individual worms by maintaining an-

imal identity while tracking tens of  animals. Furthermore, the algorithm is robust to adverse

conditions with significant background subtraction errors, conspecific interaction, and the

lack of  visually specific physical features. WALDO implements a novel approach based on

the simplification of  complex networks44,45, which allows tracks that were generated by the

MWT software to be sequentially ordered and related to one or more subsequent tracks that

could have been created by the same individual. This mathematical representation captures

the ambiguities present in the raw data and provides a framework to apply heuristic rules to

reconstruct trajectories and interactions of  large numbers of  visually indistinguishable organ-

isms.
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Figure 2.1. WALDO combines tracks that have been disrupted by collisions and
background subtraction errors.(a) A schematic showing how WALDO extends the
multi-worm tracker’s functionalities. (b) Images show a C. elegans, medaka fish,
zebrafish, drosophila, and ant at a typical tracking resolution. Visual features such
as eyes, variations in body transparency, antenna, or legs are emphasized with black
arrows. (c) Ten day-2 adult worms on a bacterial lawn that are being tracked for 12
hours. (d) A set of images representing correct tracking and several classes of dis-
ruptions that can interfere with maintaining animal identity. (e) A diagram showing
when and how long each blob is actively being tracked before the identity of the
individual is lost. The first and second columns show before and after WALDO is
used to reconstruct an individual’s track. The rows sort track fragments by their
duration.

2.3. Results and Discussion

The MWT software identifies hundreds to thousands of  tracks for each active worm and for

each hour of  recording. In order to assign tracks to the same individual, we define a directed

acyclic network representing all physically possible ways the individuals under study could have
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a Figure 2.2. A directed acyclic net-
work provides a means to orga-
nize problems that arise in track-
ing multiple animals and to ap-
ply solutions. (a) The sequence
of events in a tracking disruption
can be represented as nodes con-
nected by arcs. The first and sec-
ond rows illustrate when an animal
is fragmented into two blobs and
when two animals come into con-
tact with one another. (b) Each
class of tracking disruption can be
corrected using a different opera-
tion. Pruning and consolidation re-
moves track fragments that were
created when a single worm was in-
correctly split into multiple blobs.
When a collision occurs, the iden-
tities of animals are calculated us-
ing the amount of overlapping pix-
els of each blob pair before and af-
ter the collision. To discover con-
nections between tracks that were
not included in the tracking data,
missing arcs are inferred using po-
sition and time deltas.

created the individual tracks. In our network representation, a node represents a given track

and each arc (or directed edge) shows that a track could follow another in time, meaning that

they could be from the same individual.

As our results demonstrate, this framework is flexible enough to account for all types of

identification errors and allows us to execute several rounds of  heuristic corrections that assign

tracks to specific individuals and simplify the total network structure.
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2.3.1. Problematic True Positives: Shape Identification

Background subtraction can misidentify enough pixels that a single worm gives rise to two

separate blobs (Fig. 2.2a). We define two operations – consolidation and pruning – that reverse

this class of  errors. Pruning removes any parentless or childless nodes that are tracked for

less than one second. This issue arises when the split segments are momentarily lost (Fig.

2b). Consolidation combines all nodes from a specific network motif  that spans less than

three seconds and is composed of  a parent node connected to multiple intermediary nodes

that eventually all connect to another single child node. This issue comes into play when

an animal is split into multiple blobs whose tracks eventually converge (Fig. 2.2b). Together,

consolidation and pruning are responsible for 49% of  the network simplification operations

implemented by WALDO (see Supplementary Table A.2).

2.3.2. Problematic True Positives: Collisions

When two animals are in close physical proximity, they can be misidentified as a single blob

that persists until they achieve substantial physical separation. Figure 2.2a illustrates how a

collision between two worms produces a sub-graph comprising 5 nodes and 4 arcs. While this

motif  does not cover every type of  collision, such as three-worm collisions or collisions with

problems in background subtraction, our analysis indicates that it captures 91% of  all collisions

observed in our experimental setup. Collision resolution is further complicated by the time

persistence of  the collided blob (node ‘c’ in the Figure 2.2a collision), with almost 10% of

these misidentified shapes lasting over 5 seconds. These problems in how WALDO maintains
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the identities of  animals in collisions are resolved as shown in Figure 2.2b and discussed in the

Supplemental Methods.

2.3.3. False Negatives: Inferring Missing Arcs

The MWT can momentarily stop tracking a worm when: a) the worm crosses a portion of

the field of  view with poor contrast; b) if  a frame was dropped during real-time tracking; c) if

the worm touches the edge of  the image; or d) if  the worm body is split into multiple blobs

that are not identified as being possibly connected. All of  these computer vision errors give

rise to nodes that are sources, sinks, or isolated nodes. Regardless, to maintain the identity

of  an animal during the recording, we need to be able to connect sinks and sources that may

correspond to the same animal (Fig. 2.2b). Thus, in order to discover arcs that might have

been missed during data collection, we examine every potential pairing involving a sink and

source node and estimate whether it is plausible that the same animal gave rise to these nodes.

A missing arc is added for connections with small time and distance gaps (∆t and ∆d).

Arcs are added to the network only if  the distance gap is smaller than 1 body-length and

the time gap is less than 10 seconds. In test sets, this threshold was shown to find 90% of

the missing arcs between tracks created by the same animal while only introducing 10% false

positives (see Supplemental Methods).

Collision resolution, consolidation, and pruning therefore simplify the network by merging

or removing nodes. Inferring gaps increases the complexity of  the network. Regardless, these

operations all contribute to longer tracks assigned to the same animal.
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Figure 2.3. Long observations are
required to discover slow changes
in behavior.(a) Reported observa-
tion and acclimation periods vary
dramatically from paper to pa-
per. Each row represents a C. el-
egans motility experiment reported
in a paper11,14,16,31,38,46–58. The
shaded region indicates the period
in which animals were actively ob-
served. The line at the begin-
ning indicates the acclimation pe-
riod before animals measurements
are acquired. (b) Shows the av-
erage speed across time of worms
raised at 20°C until early adult-
hood whereupon they were shifted
to 15 or 25°C and subjected to me-
chanical stimulation. These plots
show the first three hours immedi-
ately following the mechanical tap-
ping. Bold lines indicate aggre-
gated averages of all animals at a
given temperature. Smaller lines
indicate averages for a plate of 10
animals.
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2.3.4. Implementing Multiple Operations

The animal identity assigned to a track after implementing a set of  operations can depend on

the order in which the operations are performed. The order of  operations is particularly im-

portant in a subset of  sub-graphs that contain overlapping motifs (Supplemental Fig. A.1a).

Our analysis reveals that the sequence of  operations that yields best results is: i) identify and
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untangle collision nodes, ii) infer gaps, iii) prune tracks, and iv) consolidate tracks. In Sup-

plemental Fig. A.1b, we illustrate how iterative network simplification merges more and more

tracks that belong to the same individual.

In the ideal case, all tracks for the same animal will be merged into one node that is isolated

from the rest of  the network. Using MWT to track 10 animals, none of  the animals are tracked

for over 50% of  the recording’s duration. With WALDO, 41% of  tracks were longer than 90%

of  the recording, and 26% of  the animals are tracked for over 99%.

2.3.5. What We Can Learn With Longer Tracks For More Animals

C. elegans can exhibit different types of  behaviors and behavioral changes across a variety of

conditions, stimuli, and time scales. As a result, researchers have used diverse experimental

protocols based on their constraints and goals that vary in how quickly individuals can be as-

sessed, the speed at which experimental conditions can be tested, the resolution of  animal’s

body posture, the environmental control and what type of  stimulus can be delivered. Conse-

quently, the methodology employed among representative papers (Figure 2.3a) varies widely

when comparing the acclimation and observation times (for sources, see Supplementary Table

A.3). Many of  the protocols observe motility for less than a minute. Furthermore, the papers

that have longer recordings sometimes use non-overlapping observation periods.
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Figure 2.4. A large enough set of behavior profiles from individual animals al-
lows populations of C. elegans to be classified into behavioral subgroups. (a)
Three individuals show diverging behaviors despite originating from the same ge-
netic background (N2) and being recorded under the same conditions (day-1 adult,
hermaphrodites recorded on OP50, at 20°C). (b) A rudimentary approach for finding
distinct types of behaviors within the same population is to divide the individuals
based on their levels of activity. The groupings differentiate active and inactive an-
imals from the 20°C experimental condition (shown in Fig. 2.3) by classifying them
as having more or less than 5 min of active movement in the first 30 minutes, the
middle 30 to 90 minutes and the final 90 to 180 minutes of the recording. (c) Com-
paring the prevalence of different behaviors across the temperature conditions used
in Figure 2.3.
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2.3.6. Longer Observation Periods Provide Context

As an example of  a dynamic change in behavior observed over the course of  several hours,

animals are shifted from their growth condition (20°C) to a new lower or higher tempera-

ture, mechanically tapped to stimulate movement, and recorded. The worms shifted to 25°C

show a much higher initial movement rate that decays quickly, whereas animals shifted down

to 15°C exhibit an initial slower motility but remain at the same level for nearly two hours

(Fig. 2.3b). As a result, there is a period in which 25°C worms move faster, a period in which

15°C worms move faster and two periods in which there is no discernible difference between

the two conditions. Thus, in conditions where animals are changing behavior slowly, the seem-

ingly inconsequential choice of  the observation period can dramatically alter the outcome. The

accessibility of  long recordings is therefore crucial to obtain robust, reproducible phenotypes.

2.3.7. Characterizing Behavioral Consistency requires Large Numbers of

Individuals

Individuals in a homogeneous population of  worms often show a large behavioral variability.

For example, the three animals whose data is shown in Fig. 2.4a show considerable variation

in how long they remain agitated after exposure to a tapping stimulus and how often they

switch back and forth between roaming and dwelling states. Quantifying how prevalent these

behaviors are within a population requires capturing long tracks for a sufficiently large number

of  individuals.

The data displayed in Fig. 2.4b demonstrates that individuals within a population can be

classified into multiple subcategories. We classify worms as either active or inactive during
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different observations periods. At 20°C, we find that 80% of  individuals are active during the

first 30 minutes, but that only about 30% of  individuals remain active at later times (Fig. 2.4c).

Intriguingly, data collected for populations of  worms studied at 15°C and 25°C have different

distributions of  activity levels with time. When contrasting two or more experimental condi-

tions with a sufficiently large number of  long-observations for each individuals, we can begin

to probe whether or not worms in each condition exhibit the same set of  behaviors. While

we demonstrate this capability using a very simple metric of  activity, the MWT based data

provides a variety of  activity, posture, and trajectory based attributes that can be quantified35.

2.4. Summary

WALDO is an open-access network that builds on the multi-worm tracker to provide long-

term movement analysis of  individual C. elegans nematodes while maintaining the identity of

each animal in a free moving population. The ability of  WALDO to disambiguate the multitude

of  tracks generated on an agar plate containing up to 60 adult animals over one day required

the implementation of  a directed acyclic network to convert thousands of  short tracks into

long contiguous trails. To demonstrate the performance of  the WALDO algorithm, we ana-

lyzed 83 recordings monitoring a range of  10 to 60 worms. On average, WALDO corrected

3,300 disruptions per three-hour recording of  10 animals. This enabled the tracking of  41% of

the population for over 90% of  the recording period of  which 25% of  the population could be

followed for 99% of  the observation period (see Fig. 2.1e and Supplementary Table 1). This

capability increases the number of  individuals that can be analyzed for any given experimental
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condition, thus lowering the cost of  detecting reproducible phenotypes, increasing the statis-

tical power of  population level trends (Fig. 2.3b and c) while, at the same time, allowing for

the detection of  sub-populational behaviors (Fig. 2.4b and c).

We demonstrated the capability of  WALDO to reveal unpredicted behaviors that could

cause experimental inconsistencies with shorter observation periods by following individual

animals for long periods of  time under different ambient temperatures (15, 20, 25°C). Each

ambient condition affects, in a non-monotonic manner, a population of  worms’ relaxation

time after a perturbation to stimulate movement. Moreover, individuals within each popula-

tion exhibit a wide range of  behavioral differences that cause large measurement fluctuations

in small samples and can only be classified and quantified by following a sufficiently large

number of  individuals over the course of  several hours. WALDO, therefore, provides a new

methodological complement for animal behavior tracking analysis by efficiently quantifying

behavioral changes that require recording over periods and assessing large numbers of  indi-

viduals.
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CHAPTER 3

Quantifying Healthspan Through Behavioral Analysis

The work presented in this chapter will be submitted for publication within the next three

months and involved significant contributions from Andrea Lancichinetti, Renee Brielmann,

Rick Morimoto, and Luis Amaral.

3.1. Introduction

Extending lifespan has been a primary focus of  medicine. However, lifespan fails to take into

account the quality of  life during each year. A major shift in modern approaches has been to

focus on ‘healthspan’: the period of  life in which an individual is healthy and able to have a

high quality of  life. We want to extend the number of  high-quality years an individual lives,

not just the total length. This shift in metrics, however, is not without drawbacks.

Lifespan measurements in C. elegans have lead to many scientific advances. C. elegans live for

two to three weeks and are thus highly amenable to longevity research. Many findings from C.

elegans are directly applicable to mice, monkeys, and other mammals. For example, both caloric

restriction and mild intermittent stress have been shown to extend lifespan. Furthermore,

genetic approaches for uncovering the molecular pathways behind longevity have found over

50 other genetic mutations that can extend C. elegans’ lifespan. One mutation, daf-2, has shown

a lifespan increase close to 200%59. These discoveries were made, in part, because ‘lifespan’

simplifies the complexities of  living into a single binary switch: the animal is either alive or
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dead. In worms, this measurement is usually made by tapping the animals with a thin piece

of  wire every day and observing whether they move. While easy to understand, this technique

is so manually intensive that a machine was developed in 2013 to automate the process of

quantifying lifespan by increasing the throughput and accuracy32. Healthspan, unlike lifespan,

is much more difficult to define precisely60. As a result, it is still unclear how much the findings

of  lifespan correlate with increasing the duration of  well-being22.

The decline of  physiological processes determines an animals Healthspan61. This decline

has been quantified in C. elegans for several different behavioral and morphological phenotypes

such as loss of  muscle and neuronal structure, decline in spontaneous neuron innervation, and

extensive bacterial colonization of  the intestine62–64. Studying most of  these features is either

impossible on a per worm basis or very manually intensive. A shift to behavioral measure-

ments could potentially provide a non-invasive high-throughput means of  investigating the

organismal properties of  physiological decline.

Several behavioral transitions have already been associated with aging. One study followed

worms as they transitioned, one by one, through a characteristic progression of  (1) freely mov-

ing around the plate, (2) mostly stationary but able to crawl when prodded, and finally (3) no

longer being able to crawl but still able to slightly shift when prodded24. This approach, relies

on by-eye measurements and manual picking and primarily focuses on transitions that occur

at the tail end of  the animals healthspan. Switching to automated methods for quantifying

aging behavior could save effort, increase reproducibility; and measure subtleties that are dif-

ficult for the human eye to distinguish32. Ideally, we would develop an automated approach
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that could pick up much more subtle shifts in behaviors that occur much earlier in the aging

process.

Many aspects of  movement behavior of C. elegans have been thoroughly investigated us-

ing high temporal and spatial resolution cameras. Useful behaviors that have primarily been

quantified in young adults include search behavior, foraging behavior, response to a stimulus,

and the spectrum of  body postures a worm assumes11,13,14,38. However, very few of  these

measures have been used to study healthspan. These metrics are a clear choice for scrutiniz-

ing healthspan since they have been successfully used to differentiate animals from different

genetic backgrounds13,14. Quantifying how these behavioral patterns change as the worms

progress past reproductive age and into their older years could be the key to uncovering a

reproducible, tractable, and highly quantitative approach to defining healthspan in this impor-

tant model organism. Towards this end, I will investigate how a suite of  behaviors changes

as the animals age. I will categorize the behavioral hallmarks of  age-related decline. My ap-

proach allows researchers to record the movement of  multiple individuals for several hours.

We quantify behaviors of  individuals by converting the position, orientation, and posture data

from each track into a multivariate set of  behavioral time-series. The most relevant proper-

ties of  the behavioral time-series are summarized by a set of  features. The features offer a

succinct summary of  an individuals behavioral profile that can be compared across multiple

experimental conditions by creating a network representation that shows which animals have

the most similar behavioral profiles.
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My preliminary experiments focus exclusively on aging in wild-type animals rather than

proceeding directly to comparisons between strains, temperatures, food sources, or interven-

tions. Creating a complete profile of  wild-type aging lays the groundwork for investigations

in other directions. However, it also offers a set of  interesting questions on its own: When do

the most prominent behavioral changes occur in the aging process? Do individuals age in a

stereotypical manner or do different animals show divergent aging phenotypes?

3.2. Background

3.2.1. Behavioral Measurements

The first steps in any behavioral analysis are selecting behaviors to investigate and determining

how to quantify them. These steps, however, depend on knowing something about the animal

itself. C. elegans, like most animals, have various degrees of  activity and inactivity11. During its

most inactive periods, it lays motionless, stops feeding, and stops defecating11,65,66. While ac-

tive, the worm alternates between sharp changes in direction and long curved trajectories38,52.

Every one of  these actions has an underlying molecular basis. In this section, I will focus on

several important metrics for quantifying different aspects of  crawling behavior. Research into

an animal’s behavior is only as powerful as the choice of  measurements and the accuracy with

which we can make those measurements.

Body Posture, Curves, and Eigenworms. The first thing most people notice about

the worm is its shape. A worm enables every movement by changing the shape of  its body.

It crawls in a sinusoidal motion. However, deviations from its standard posture or move-

ment can reveal information about changes in its surroundings or internal state. The animal
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will curl into a coil for several minutes if  submerged in liquid. The worms body often be-

comes nearly straight as it ages and is near death. The posture of  the animal contains vital

information about its internal state. Several methods have been proposed for quantifying

posture16–18,40,67. All of  them begin by representing the shape of  the worm as a curved line in

space. This representation ignores the variations in the worm’s thickness, but these variations

are typically insignificant. To standardize postures, researchers often rotate the worms into a

standard orientation and normalize the length of  the worm. Curves, without a standardized

set of  equations, are inconvenient for comparisons due to their large number of  dimensions.

Thus, researchers have proposed different mathematical properties to summarize the relevant

information contained in them16–18,67. Perhaps the earliest approach was to extract the curves’

sinusoidal properties (wavelength and amplitude)67. Newer approaches use the fewest possi-

ble number of  standardized curves to summarize a worm’s shape16,18 or use a set of  ‘shape

primitives’ that are based on the organization of  muscle groups in the worm17. These rep-

resentations have led to the discovery of  several new phenotypic properties. Although much

of  the information in each representation is redundant, each representation may have it’s own

strengths. When seeking key behavioral readouts for healthspan, good readouts for posture

are vital.

Runs, Reorientations, and Biased Random Walks. Worms live in a world of  temper-

ature and chemical gradients. Unlike sighted animals, which can anticipate obstacles in their

path, worms must navigate their environment with only the local chemical and physical in-

formation around them. Any practical movement strategies require sensing signals, shifting

position, and checking if  the signal has intensified or weakened. Thus, the trajectory of  a



40

worm rarely proceeds straight towards its target but progresses in a series of  runs and reorien-

tations that eventually result in moving in the desired direction. Mathematically, this type of

movement is best described as a ‘biased random walk’38. It contains some randomness due to

the worm’s need to test its surroundings, however, the worm isn’t moving in a purely random

fashion.

When a worm is crawling, it alternates between crawling in a curved arc (called a run) and

changing direction completely (called a reorientation or reversal). In some conditions, gradual

turning during runs and large reorientations contribute equally to a worms total directional

change39. However, this number will vary dramatically under certain conditions and stimuli.

For example, the frequency of  reorientations is increased by mechanical stimuli or decreased

by hunger. The worms seek to avoid mechanical stimulation by crawling in a different di-

rection26. If  hungry, the worms will cover more ground by crawling in straighter paths11.

Reorientations can be further broken down into two distinct types: (A) the worm bends back

on itself  such that head and tail nearly touch (called omega bend) or (B) the worm excites a

series of  small reversals resembling a three-point turn in an automobile (called a pirouette).

Omega bends and pirouettes have both been linked to genes and neuronal ablations that re-

duce their frequency28,41,68,69. The fact that this type of  event is useful for studying such a large

array of  different biological contexts makes it likely to be relevant to the aging process. Both

types of  reorientation events show a radical shift in a worm’s orientation. Tracking software

can easily spot omega bends because the coiled outline of  the worm becomes round and short

rather than long and skinny41. Tracking pirouettes requires that software either recognize

the complex pattern of  motion or recognize that a reorientation occurred without an omega
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bend. When using these events to compare animals from different experimental conditions

(such as alternate genetic backgrounds or food types), these events are most often analyzed

as a probability of  happening during a given observation period (the average reversals per

minute). However, the changes in reorientation frequency over the course of  minutes, hours,

or days could be an informative extension to this type of  analysis.

The subtleties of  runs and reversals can be interpreted using the mathematical framework

of  ‘biased random walks’. The set of  behaviors that will enable a worm to move in the desired

direction is limited: (1) it can slowly turn towards the desired direction during a run, (2) it can

control the frequency of  reorientation events, or (3) it can control the magnitude of  change

during a reorientation event. Worms have, in fact, been shown to use all three of  these strate-

gies38,70. However, they employ different combinations of  them in different situations. These

measurements are most useful if  worms are on a controlled thermal or chemical gradient.

They still play a significant role in how a worm changes its basic space exploration strategy

in the absence of  such a gradient. Due to their different physiological demands at different

periods of  their life, it is likely that C. elegans also vary their search strategies as they age.

Behaviors, Behavioral States, and Hidden Markov Models. C. elegans vary how active

they are over time. On short timescales, their movement can be divided into four categories:

(1) forward locomotion, (2) backward locomotion, (3) non-directional movement, and (4)

quiescence11,15,65. These behaviors can persist for many seconds19,66,71.

If  we extend the observation period from minutes to hours, however, individuals in differ-

ent conditions display each of  these categories in very different proportions. Hungry animals

without food spend very little time dwelling. Upon exposure to food, these same animals
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switch to primarily dwelling. Animals that have previously been starved show an increased

period of  dwelling when exposed to food. Animals undergoing stressful environmental con-

ditions are usually quiescent. Tracking how an animal proportions its time doing each of  these

activities could potentially be the most important metric for quantifying healthspan.

The proportion of  time that an animal spends doing each movement behavior is termed

its behavioral state. Calculating an animals most likely behavioral state has been computed us-

ing Hidden Markov Models (HMM)11,19. Previous uses of  HMMs to quantify behavior have

exclusively used centroid position data. Some have extracted just speed and angular velocity

to incorporate into their HMMs19, some have added acceleration, speed, angular velocity and

a heuristic for reorientation events11. To date, Hidden Markov Models have not been im-

plemented with tracking systems that detect shape, omega-bends, or pirouettes. It is unclear

how much these different properties coincide with different behavioral shifts in activity levels.

However, it is clear that much more detailed descriptions of  behavior can be created using

HMMs.

Some behavioral states can be thought of  as ‘hungry’, ‘satiated’, or ‘stressed.’ These behav-

ioral states are maintained for prolonged periods, up to the order of  an hour17. The existence

of  both the short term locomotion categories and the longer term behavioral states indicates

that recordings that last several minutes will not properly quantify an animals’ behavioral state.

This is precisely the problem that I have been working to solve in Chapter 2, and we are now

in a unique position to quantify how various behavioral states shift over the aging process.

Other Metrics and Environments. Computational analysis of  worm motion continues

to improve environmental control, camera resolution and frame-rate, and algorithms. As a
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result, new approaches for measuring different aspects of  motion keep being proposed. Some

aspects, such as tracking in 3D environments72 or using microfluidic chambers to control

chemical stimulus42 will doubtless reveal new phenotypes by exposing the worms to an ex-

panded range of  conditions. As image processing improves, we may be able to link patterns

in motion to the timing of  events such as egg laying or pharyngeal pumping that occur on a

much smaller size scale. Other advances, such as real-time tracking of  animals, have allowed

for the collection of  much larger quantities of  movement data35. The timing of  head move-

ment, for example, was a newly proposed technique73. As a result, the types of  quantification

I implement are not comprehensive but cover the primary categories of  movement behavior

that have been analyzed so far: posture, runs and reorientation events, and the presence of

behavioral states.

3.2.2. Analysis of Behavior Profiles

How can a suite of  behavioral metrics be combined to quantify healthspan? There is a host of

decisions that go into creating an analysis such as this. For example, ‘how should we weight

the relative importance of  different measurements?’, or ‘should individual animals of  popu-

lations be used as the basic property to be compared?’ While open-ended, analysis like this

follows a series of  well-defined steps: (1) Extract a set of  features that describe an individual’s

behavior. (2) Preprocess the feature set by removing outliers and de-skewing or normalizing

the data. (3) Remove Redundancies and Correlations (usually using dimensionality reduction

or feature extraction) and finally, (4) Compare Behavioral Profiles. I will discuss why each
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step is performed and what methods have been used for similar types of  comparisons in the

C. elegans literature.

1. Create Features. After we have chosen a set of  measurements that should be recorded

over time, we must pick which ‘features’ best summarize those time-series. The term ‘feature’

is used in Computer Science, Computer Vision, and Machine Learning fields to mean a single

measurable property of  the phenomenon being observed. In this case, a feature is a single

measurement about the worm such as ’mean centroid speed’ or the ‘minimum observed time

between reorientation events’. A well-chosen feature reveals true biological differences while

a poorly chosen feature might show non-existent differences (pure noise), have low resolving

power (not enough dynamic range), or be too similar to other features you’ve selected (double

counting same biological difference).

We do this because features offer a convenient way of  comparing the differences between

two animals. For example, an animal’s speed over time might fluctuate wildly, but summa-

rizing the speed time-series using the ‘mean speed’ feature turns it into a number that can be

compared between multiple animals.

Although there are thousands of  methods from many disciplines that use a set of  features

to compare time-series74, there are only several techniques that have been used by the C.

elegans community. I will discuss three tactics: (1) summary statistics for each measurement,

(2) statistics that take into account the multivariate aspect of  a worms time-series, and (3)

mathematical models that include both sequential and multivariate information. The most

common approach is to use summary statistics such as mean, max, variance, or the decay

rate of  autocorrelation. Although easy to work with, many of  these methods discard the
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sequential nature of  the time-series and ignore the relationships between different types of

measurements. The second approach includes relationships between different measurements

such as the correlation between speed and angular velocity for each animal11. This approach

maintains the 1st order relationships between different measurements. The final and most

detailed method for comparing time-series relies on creating a mathematical model that could

have generated a worms sequence of  movements. Depending on the mathematical model,

sequence information is not discarded but abstracted into a set of  parameters. Fitting a Hidden

Markov Model to a worms behavior time-series, for example, is an example of  this approach.

In each of  these cases, the time-series of  measurements is quantified as a set of  features to

facilitate the comparison of  many different behavioral profiles.

2. Preprocess Features. There are several standard steps that aid in comparing multiple

features. The first is to normalize the features so that all features are weighted in a similar

fashion. Previous C. elegans papers have used min-max linearization, Z-score, or sigmoidal

methods to normalize their feature sets75. It is clear that normalization is required. However,

it is unclear which normalization technique is best for this application.

3. Remove Correlations and Reduce Dimensions. This step is intended to detect and

remove the effects of  measuring too many similar properties. For example, mean speed and

median speed are two separate features. However, they are highly correlated and using both

could increase the importance of  speed relative to other metrics.

The major approaches for removing correlations between features are: (A) use dimen-

sionality reduction such as principal component75 or (B) select a smaller set of  features that

are linearly independent14. Both approaches can be seen when comparing Yemini et al. to Yu
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et al. Both papers used the WormTracker 2.0 apparatus to collect data on over 300 different

behavior vagrants. In Yemini et al., researchers expanded the set of  measurements into 377

distinct features, while Yu et al. hand-selected ten linearly independent features. It is unclear

which of  these approaches is preferable. In this case, the set of  377 measurements might con-

tain more information about the animals behavior, but it would have to be drastically trimmed

down using dimensionality reduction to remove the biases introduced by highly correlated

features.

4. Comparisons of  Behavioral Profiles. Once the features have been preprocessed,

and correlations have been removed, the set of  features can finally be used to compare ani-

mals against one another. This data is most often represented as an N x F matrix (N tracks

and F features). Sometimes the values for each experimental condition are averaged to give

a smaller C x F matrix (C experimental conditions and M features). This representation is

versatile and has been used as a starting point for multiple types of  comparisons of C. elegans

phenotypes. One approach ranks how each condition stands for each measurement feature53.

This approach can be helpful if  you want to examine a single condition and see at a glance

how it is significantly different than other conditions. Another approach finds groups of  re-

lated conditions using clustering algorithms14. Lastly, the relationships between each set of

conditions can be explored in greater detail by calculating a similarity metric and creating a

network of  relationships13. In several of  these comparisons, researchers found that genetic

defects that occur in the same signaling pathways cause behavioral profiles with very similar

features13,14.



47

3.3. Results and Discussion

3.3.1. Multi-Worm Tracker Comparison.

The behavioral aspects of  healthspan have not been defined. Given the many types of  diverse

behavioral properties that we want to quantify (see background), an ideal system for collecting

this behavior should be able to: (1) track multiple individuals as this allows us to quantify both

average of  a population and discover the spread of  individual differences, (2) track the shape as

well as the outline of  an animal, because many of  the detailed movement behaviors are shape

dependent, (3) have fast time resolution (frame rate) to capture small short movements, (4)

work in relatively open environments to give worms the freedom to move in an unconstrained

fashion, and (5) track animals for long periods of  time in order to capture changes in the

animal’s behavioral states. The ability to also track shapes of  worms usually requires the tracker

to be able to handle large images as the field of  view must be large enough to contain many

animals while maintaining each animal with a sufficiently high resolution to extract shape.

The ability to track multiple animals for long periods of  time necessitates a collision resolution

algorithm as the interactions between animals can quickly obscure which is which. The system

that fulfills the most of  these requirements is the most appropriate tool for examining the

behavioral signs of  healthspan.
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To assess what tools are appropriate for this type of  data acquisition, I compiled a list

of  worm trackers and compared them against the five criterion mentioned above. This list

resulted from a 2014 paper, ‘Keeping Track of  Worm Trackers,’ which lists the eight most

widely used worm trackers. Five of  those trackers followed single animals and only three

of  these track multiple animals: the Kerr Lab’s Multi-Worm Tracker35, the Goodman lab’s

parallel worm tracker36, and the Gottschalk lab’s OptoTracker76. In my analysis, I include

two additional trackers: WormLab and WALDO. WormLab is a commercial worm tracking

system. WALDO is the in-house software extension for MWT discussed in Chapter 2. I have

compiled a table from a literature review, the WormLab’s spec pages, and parts of  my research

(Table 3.1).

Trackers fall into several categories: (A) Trackers that capture just centroid position (and

sometimes reorientation events). These are the most basic and most prevalent form of  multi-

worm trackers. They include the Goodman lab’s parallel worm tracker, the optotracker, the

Morimoto lab’s wrmTrck37, and many unshared scripts used in tracking papers. (B) Trackers

that capture centroid position and shape but can’t maintain the identity of  individual animals,

such as the Kerr Lab’s Multi-Worm Tracker. Finally, (C) trackers that fulfill those requirements

and also include collision resolution algorithms: Waldo and WormLab.

WALDO, however, has several distinct advantages over it’s closest competitor, WormLab.

It is both freely available (given appropriate tracking equipment) and open-source. Further-

more, by building off  of  the Kerr lab’s Multi-Worm Tracker, it can use the real-time processing

and share file formats. The real-time processing of  recordings uses approximately 100 times

less storage space for the same resolution of  recording. This is an enormous advantage when
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Continuous Metrics Units

Movement speed along the body body-length / s

Movement speed perpendicular to the body body-length / s

Body orientation radians

Average curvature 1 / body-length

Table 3.2. The set of continuous metrics.

collecting long recordings of  multiple animals, as it can extend into thousands of  hours of

footage.

3.3.2. A Suite of Measurements for Quantifying Health-span

I have created a suite of  measurements that will detect most known behavioral properties that

have been successfully used to explore the genetic differences between C. elegans strains under

standard conditions (Table 3.2, Table 3.3, and Figure 3.1). In some cases, such as the eigen-

worms, I resorted to using a simpler heuristic ‘mean curvature’ as a placeholder until the full

metrics could be implemented. It is highly likely that future work will incorporate more types

of  measurements as the many relationships and correlations between these measurements have

not yet been explored using multi-hour tracks from individual animals.

3.3.3. Overcoming Measurement Problems

When designing a system of  measurements, any sources of  error must be tracked down and

minimized. In the case of  quantifying C. elegans movement, there were two primary causes
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Figure 3.1. A sample multivariate track time series. The four main continuous vari-
ables are represented as time series. (A) The speed along the forward-backward axis
of the worm. (B) The speed along the perpendicular left-right axis. (C) The mean
curvature of the worms posture at every time-point. (D) The orientation of the
worm. (E) The top-down view of the worms trajectory over time. The red portion
of the curve indicates the portion of the track represented in panels A-D.

Discrete Metrics States

Direction Forward / Paused / Backwards

Coiled body posture Yes / No

Forging head movements Yes / No

Reorienting Yes / No

Colliding with conspecific Yes / No

Table 3.3. The set of discrete metrics.

of  measurement inaccuracy: jitter and imprecise shape reconstruction. Jitter distorts an an-

imal’s position and thus strongly influences measurements of  speed, acceleration, and some



52

calculations of  angular velocity. Inaccuracies in background subtraction can distort an ani-

mal’s shape and subsequently disrupt measurements of  length, width, posture, omega-bend

frequency, and head movements.

Jitter occurs because of  small shifts in the positions of  the camera and agar surface support-

ing the worms. Although every system experiences jitter, the setup I constructed is particularly

prone to jitter since we record movement inside of  a temperature-controlled incubator and use

a relatively high 10 Hz frame-rate (which negatively influences the signal to noise ratio). The

incubator’s fan causes an increased amount of  jitter. However, the incubator allows us to

control temperature fluctuations, which are known to have a large influence on Celegan’s de-

velopment, lifecycle, and lifespan. To reduce jitter, I added a vibration dampener and strongly

fixed the camera positions in place. Furthermore, I have implemented several smoothing tech-

niques to collect accurate speed and orientation measurements (Supplementary Methods).

The second source of  error, imprecise reconstruction of  a worm’s shape, occurs when

there is too little contrast between a worm’s body and the surrounding area of  the image. To

combat this, I switched from light bulbs to light plates for even lighting, spread the bacterial

lawn evenly over the whole agar surface to avoid gradients in bacterial density, and increased

the cameras zoom to get a larger number of  pixels in each worms silhouette. Furthermore,

I implemented several steps to the computational analysis that detect and omit troublesome

shape measurements (see Supplementary Methods).
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Figure 3.2. Detecting and removing spurious shapes. (A) A segment of length and
width data. The vertical histogram to the right shows the distribution of lengths and
widths in the full time-series. (B) That time points are flagged and which regions
are discarded in a portion of the time series. (C) A sample of flagged and unflagged
worm shapes.

3.3.4. Behavioral Changes with Age.

We have used the suite of  behavioral metrics to collect data on 90 worms and have begun

to dissect the behavioral shifts they display when aging. So far we have collected two runs

of  aging experiments with 45 worms each. For each run, three plates are used with 15 age-

synchronized worms per plate. We record each set of  animals every day for a block of  3 hours

(1 or 2 times per day) starting on the first day of  adulthood until day 12 of  adulthood when

the vast majority of  animals are no longer freely moving. At the start of  every recording, the

plates are tapped to agitate the worms. In this fashion, we collect data for both their agitated

state of  increased movement as well the return to their basal state. To remove offspring and
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ensure a steady food supply, we transferred animals onto fresh plates containing food once

every day (Supplementary Methods).

Certain measurements show much clearer trends than others when examining average

change with age. Body shape metrics such as length and average-curvature show a 100%

increase and a 50% decrease during the first three days of  adulthood and then much more

slowly after that. The average speed of  animals, however, does not show any clear changes

with age.
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1 112 3 4 5 6 7 8 9 10
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Figure 3.3. Age-related changes in tap-habituation. To show the average change
in speed over time, I pooled the speeds of time points from several recordings and
binned them into minutes. The plates were manually tapped to agitate the worms
before the recordings. (A) The average of 8 recordings for day-1 adult worms. (B)
The same types of plots compressed horizontally to show how this decay changes
from day-1 to day-7 of adulthood.

This is largely due to a decreasing level of  activity within each recording (Figure 3.3). At

the beginning of  each recording the plates are tapped and the animals temporarily become
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more agitated. The variation in average speed within each day is significantly larger than the

average variation between each day. What we can see from these recordings is that the level of

agitation changes with age and the duration of  time that the animals remain agitated increases

with age.

These measurements, however, still contain much more information that could be re-

vealed by further analyzing the individual differences present in each of  the tracks. The an-

imals clearly fluctuate between periods of  high and low activity, yet the population averages

do not separate the two. Further analysis of  this data could reveal the most in-depth analysis

of  behavioral states to-date, as previous analysis only included centroid position and not body

posture11,19. Many of  the most interesting aspects of  behavior will come from new computa-

tional approaches to analyzing these metrics.

3.3.5. Preliminary Network Analysis

A complete way to explore aging of  individual animals, given the data we have collected, is by

creating a network of  behavioral profiles for many snapshots of  animal behavior taken over

the course of  a worm’s lifespan. When recording multiple individuals, an individual might

create multiple tracks in a recording. Although our previous work reduces the number of

tracks an individual creates, it does not always collapse an individuals behavior into a single

continuous track. In the network, each node represents one track and each link represents a

strong similarity between two tracks.

Since every worm is recorded at least once every day for 12 days, the network represents

each worm using nodes. Each node corresponds to a snapshot of  an individual’s behavior
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at a certain time in its life. A link shows that the individual snapshot is similar to another

snapshot. In this way, we should be able to see the many relationships between different

behavior snapshots. We will be able to see how similar animals may to other animals of  their

current age. Likewise, we can begin to investigate how similar animals are to themselves at

different ages. This method even allows for the possibility that some worms follow a different

sequence of  behavioral changes than the rest of  the population.

A Cautionary Note. All of  the network analysis shown here was performed during the

early stages of  this project. We use a reduced set of  measurements that consisted of  only

centroid speed, length, and curvature. Furthermore, we had yet to correct the problem of

maintaining the identities of  individuals (Chapter 2), so the majority of  tracks we analyzed

contained less than 5 minutes of  information. While I currently believe that that splitting the

tracks into distinct behavioral states and measuring the properties of  each state separately will

lead to a more accurate, complete, and reproducible set of  behavioral measurements, during

this first pass of  this analysis, I implemented a much simpler technique.

Network Creation.To collect a set of  behavioral features, I collapsing the time-series into

a distribution and using the nine deciles from each measurement (10th percentile, 20th per-

centile, up to 90th percentile). This technique has the advantages of  being easy to calculate

quickly, does not assume the data comes from a particular distribution and is easily calculated

with time-series of  very different lengths. However, it is not ideal, as it looses all the sequen-

tial information stored in each time-series and generates a feature set that contains a large

amount of  redundant information. These features were normalized using z-score, the dimen-

sions of  the data were reduced using principal component analysis, and the Euclidian distance
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Figure 3.4. A network showing the similarity between tracks recorded for ages in the
first week of adulthood. (A) Shows the network similarity between 7000 individual
tracks. The colors of each node indicate the age of the worms. (B) Shows commu-
nities calculated from the network of individual tracks. The proportion of ages is
represented in each cluster as a pie chart. These networks show a clear separation
between animals in the first several days of adulthood. Most of the structure of these
networks is due to length and curvature measurements.

between each animal in component space was used to construct a network (see Supplemen-

tary Methods). I represent the network for animals from day 1 to day 6 of  adulthood (Figure

3.3) The nodes are clustered based on similarity and colored by the age of  the worm. Even

using the first-pass behavioral data, the initial three days of  adulthood separate quite clearly

in the network. The reason the first several days are highly distinct from one another is that

both curvature and length strongly vary over the first couple days. Average speed, however,

varied too much between different 5-minute tracks of  the same age to detect any significant

differences between animals of  different ages.
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3.4. Summary and Conclusions

The quantification of  healthspan is vital for studies that focus on longevity, disease prevention,

and well-being. I have been developing an automated, non-invasive, high-throughput means

for quantifying the health of C. elegans using behavioral data.

As a first step in characterizing C. elegans’ healthspan, we recorded worms every day for the

first twelve days of  their adulthood using, WALDO, our custom extension to a real-time track-

ing software (Chapter 2). Our exploratory dataset includes multi-hour tracks on consecutive

days for 90 individual animals. We converted each track into a suite of  behavioral measure-

ments that include body curvature, speed, orientation, head-motion. We used these features to

determine how properties change over the course of  a C. elegans’ lifespan. The most striking be-

havioral differences visible at a population level are a decline in curvature, a rise in fall in speed

when agitated, and an increase in how long it takes for animals to return to a basal state after

agitation. This approach to data collection lays the foundation for novel behavioral analysis

techniques that allows us to compare the relationships between thousands of  tracks spanning

twelve days of  adulthood. To start with, we split the multivariate set of  behavioral time-series

from each track into a series of  four discrete actions, forward crawling, backward crawling,

coiling, or colliding with another animal. While these portions of  analysis are still preliminary,

the goal is to explore the relationships between distinct measurement time series in each state

and to develop a mathematical model for how the each animal transitions between each of

these states. We will use this model to determine the most relevant set of  behavioral features

to create a behavioral profile that allows us to construct a network and compare individuals

between and across ages, experimental conditions, and genetic backgrounds.
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At the heart of  this analysis lies, WALDO, our system for recording dozens of  individuals

for up to twelve hours at a time. Our analysis, while ambitious, is only one of  many ana-

lytic approaches that could be completed using this type of  data set. I hope that the ease of

collecting dozens of  multi-hour behavioral recordings will lead to a rise in new metrics, new

techniques for extracting behavioral features, and a much greater understanding of  the differ-

ences between animals of  different ages, genetic backgrounds, or experimental conditions.
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CHAPTER 4

Reproductive Strategies

This work was published with Patrick McMullen, Erin Aprison, Luis Amaral, Richard Mori-

moto, and Ilya Ruvinsky in PLoS Computational Biology77.

4.1. Abstract

A major goal of  systems biology is to understand how organism-level behavior arises from a

myriad of  molecular interactions. Often this involves complex sets of  rules describing inter-

actions among a large number of  components. As an alternative, we have developed a simple,

macro-level model to describe how chronic temperature stress affects reproduction in C. el-

egans. Our approach uses fundamental engineering principles, together with a limited set of

experimentally derived facts, and provides quantitatively accurate predictions of  performance

under a range of  physiologically relevant conditions. We generated detailed time-resolved ex-

perimental data to evaluate the ability of  our model to describe the dynamics of C. elegans

reproduction. We find considerable heterogeneity in responses of  individual animals to heat

stress, which can be understood as modulation of  a few processes and may represent a strategy

for coping with the ever-changing environment. Our results surprisingly suggest that behavior

of  complex biological systems may be determined by a small number of  key components.
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4.2. Author Summary

Dynamic response to changing conditions in the environment is an essential property of  all

biological systems. Whereas extensive research over the last several decades has elucidated

numerous molecular responses to environmental stress, there is much less known how these

translate into organism-level responses. Two types of  modeling approaches are often used to

bridge this gap. Fine-grained models seek to explain phenomena as resulting from interac-

tions of  large numbers of  individual components. This approach demands a highly detailed

knowledge of  the underlying molecular mechanisms and has an inherent difficulty in crossing

spatial scales and organizational hierarchies. As an alternative, here we present a macro-level

model of  reproduction in C. elegans that uses fundamental engineering principles, together with

a limited set of  experimentally derived facts, to provide quantitatively accurate predictions of

performance under a range of  physiologically relevant conditions. One important finding is

that individuals within a population display considerable heterogeneity in their response to

heat stress. This could be a reflection of  different strategies for coping with the ever-changing

environment. Our study further demonstrates that dynamic behaviors of  systems may be de-

termined by a small number of  key components that lead to the emergence of  organismal

phenomena.



63

4.3. Introduction

Much of  modern biology is inherently reductionist, seeking to enumerate interactions and

components to elucidate the inner workings of  cells and organisms. However, phenotypes of-

ten cannot be explained simply as the sum of  the properties of  the micro-components. Emer-

gent phenomena78 are not unique to biology; physical79,80,81, chemical82, and social83,84,85,86

systems all have to deal with this challenge.

Over the last several decades, thousands of  studies have employed genetic and biochemical

approaches to reveal the components of  biological processes. High-throughput technologies

have greatly accelerated discovery, generating detailed parts lists for cellular systems87,88,89.

Such abundance of  data facilitated development of  fine-grained models that provided quan-

titatively accurate descriptions of  signaling90, transcriptional regulation91, and the heat shock

response92.

Despite the success of  this general approach, it cannot be used in circumstances when

detailed understanding of  molecules and processes is not available. While this limitation can

be overcome by additional experimentation, fine-grained models have an intrinsic difficulty in

connecting cellular phenomena to organismal behavior78,93,94. An alternative is to use macro-

level modeling, which although omitting many specific details, could if  properly constructed,

could describe the overall performance of  complex systems95,96,97.

Due to its easily quantifiable output, the reproductive system offers an attractive opportu-

nity to bridge the molecular biology of  a process and the emergence of  dynamic organismal-

level phenotypes. Reproduction in Caenorhabditis elegans has been extensively studied using

genetic98,99,100,101,102, and biochemical approaches103,104,105,106,107. C. elegans hermaphrodites
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are self-fertile108. They first generate a fixed cache of  sperm109, and then irreversibly transition

to oocyte production110,111,112, which occurs continuously until reproductive senescence113.

The overall reproductive output is primarily determined by the availability of  sperm108,114,

because their number is set for the lifetime of  an individual. Many of  the specific molecu-

lar components involved in gametogenesis and later reproductive events have been charac-

terized115,116,117,118,119,120,121. For example, a signaling mechanism directly couples oocyte

maturation and ovulation to the presence of  sperm122.

Although considerable information is available about the components of  the reproductive

system, we are interested not in the cellular events, but rather in understanding how individual

animals reproduce, particularly in different environments. The distinction between these two

questions can be compared to the difference between studying individual neurons and human

behavior. Our goal here is to construct a parsimonious macro-scale model that is grounded in

experimental data. If  such a model could provide quantitatively accurate predictions, it would

serve to identify a minimal set of  biological components and processes necessary to endow

the reproductive system with its characteristic dynamics.

A time-tested approach to investigating macro-level processes is to perturb the environ-

ment in a controlled way and to measure the system’s subsequent response. Temperature has

often been used to probe dynamic behavior, as well as components and organization of  bio-

logical systems123,124,125. This is because organisms are sensitive to environmental conditions

and because temperature can be easily and precisely manipulated in the laboratory setting.

Here, we analyzed the effects of  chronic elevated temperatures on C. elegans reproduction to
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Strain Temperature (◦C)
Independent Nemotodes Eggs

Experiments Assayed Counted

N2 20 8 569 40,099

23 3 448 27,137

25 8 491 48,395

28 6 903 20,761

29 7 873 7,540

30 2 197 160

tra-3 20 2 113 11,333

25 2 124 11,575

28 4 225 8,629

cdc-48.1 20 2 129 10,644

25 2 97 4,747

28 2 97 2,089

48 4,266 193,109

Table 4.1. Summary of the experiments performed to determine the dynamics of
C. elegans reproductive behavior. The large number of quantitative observations
affords us valuable power with which to train and test our model.

connect molecular processes to macroscopic phenotypes, particularly those involved in dy-

namic responses of  organisms to a changing environment.
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4.4. Results

4.4.1. C. elegans reproduction is exquisitely sensitive to temperature

changes
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Figure 4.1. Reproduction is sensitive to chronic temperature changes. The average
number of eggs laid by an individual hermaphrodite is substantially lower at 28°C
(compared to 300 at 20°C), and is nearly zero at 30°C (A). In contrast, at 30°C,
animals exhibit considerably milder effects on motility and viability (B).

Compared to the well-understood heat shock response, less is known about how organ-

isms respond to chronic, moderate temperature stress. It is well established that the aver-

age number of  eggs laid by C. elegans hermaphrodites is dependent on temperature109. We

asked whether reproduction is more temperature sensitive than other vital processes and how

individual worms respond to temperature stress. We examined viability, movement, and re-

productive output over a range of  temperatures (Table 4.1). We developed an experimental
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protocol in which nematodes were reared at the commonly used cultivation temperature of

20°C, and then, just prior to the onset of  reproduction, individually shifted to various elevated

temperatures. This treatment—chronically exposing worms to temperatures between 20°C

and 30°C—is qualitatively different from the standard acute heat shock experiments, which in-

volve brief  exposure to nearly fatal temperatures (33°C)126. Whereas the average number of

eggs laid at 28°C was substantially reduced compared to temperatures at which worms are rou-

tinely raised (see below), at 30°C reproduction ceased completely (Figure 4.1A). In contrast,

neither viability nor motility was comparably affected (Figure 4.1B).

We documented the reproductive performance of  3,418 individual worms, which laid a

total of  144,092 embryos (Table 4.1). Importantly, we collected dynamic, time-resolved egg-

laying curves, not simply overall brood sizes. The temperatures used in our studies (20–30°C)

are likely to be physiologically relevant because C. elegans have been isolated from tropical and

equatorial locales127,128 where temperatures routinely exceed 30°C. Furthermore, nematodes

appear to dwell in compost and rotting vegetable matter129,130, where temperatures can be

even higher than in the ambient environment131.

At 28°C, however, we observed a qualitatively different behavior—there were more in-

dividuals laying low numbers of  eggs than would be expected from a normally distributed

population (Figure 4.2C). This was accompanied by a coefficient of  variation that was signifi-

cantly higher at 28°C than at 25°C (p=10-4, permutation test). Furthermore, these data could

not be captured by a single normal distribution (p<10-4, Kolmogorov-Smirnov test), but could

be well described by a mixture of  two distributions (Figure 4.2C). The relative proportion of
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animals laying a lower than expected number of  eggs increased at higher temperatures (Fig-

ure 4.2D), as evidenced by the increase in the coefficient of  variation. These results suggest

that whereas across a range of  lower temperatures reproductive systems of  all worms are ro-

bust, at higher temperatures, only a fraction of  individuals continue to act in a robust manner,

revealing an inherent heterogeneity in physiological response.

4.4.2. Simple macro-level model closely reproduces experimental results

To investigate the manner in which the observed heterogeneity arises, we developed a macro-

level model of  the C. elegans reproductive system. Our model is both simple (it includes a small

set of  essential features and parameters) and falsifiable (designed to be experimentally testable).

The reproductive system (Figure 4.3A) can be abstracted as a pipeline for the serial maturation

and subsequent fertilization of  oocytes. We conceptualized it as a series of  interconnected

compartments—the somatic gonad, spermatheca, and uterus—through which gametes flow

(Figure 4.3B). This process can be likened to a chemical reaction because transitions between

compartments can be modeled as the conversion of  precursors to products. We made two

simple but plausible assumptions (a list of  major model assumptions is given in Table 4.2).

First, all gametes in the model are conserved and can be explicitly accounted for132. Second,

all transitions between states obey mass-action kinetics. The latter is a typical assumption for

dynamic systems, used in analysis of  chemical reaction kinetics133. It states that a process

proceeds at a rate that is proportional to the availability of  each of  its inputs.

Although oocyte development and maturation involves a number of  discrete steps and

processes122,134,135, for simplicity, we subsume them into a single state. This mathematical
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1. All gametes in the model are conserved and can be explicitly accounted for.

2. All transitions between states obey mass-action kinetics.

3. Oocytes are generated at a constant rate, subject to saturation that prevents O from increasing

beyond an upper limit established by gonad size.

4. Chronic exposure to higher temperatures results in gamete death.

5. kmax varies between individuals and is drawn from a normal distribution.

6. The number of  sperm and the timing of  the onset of  embryo production are determined by

the same variable drawn from a normal distribution.

7. ko, kd, and δ have an exponential dependence on temperature.

Table 4.2. Major assumptions of the model.

abstraction simplifies the subsequent calculations and reflects the difference between a fine-

grained molecular model and a macro-level approach. We represent the number of  oocytes,

that are generated de novo, as O. Experimental data suggest that the total number of  germ cells

in adults136 and the rate of  oocyte production122 are constant. Therefore our model treats the

rate at which oocytes are generated as a constant, subject to saturation that prevents O from

increasing beyond an upper limit established by gonad size122. Together, these assumptions

define the rate of  oocyte creation (Figure 4.3B),

F o
i = kg − ksO ,(4.1)
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where kg is a rate constant describing the generation of O, and ks is a rate constant per-

taining to the carrying capacity of  the gonad.

Hermaphrodites of  the standard laboratory strain (Bristol or N2) of C. elegans produce

approximately 300 sperm during development before the germline irreversibly transitions to

oogenesis108. Because animals produce oocytes continuously until their cache of  sperm is

depleted, the number of  sperm determines the overall fecundity108. A dedicated mechanism

communicates the presence of  sperm to the developing oocytes. Sperm release major sperm

protein (MSP) into the proximal gonad137, where it induces meiotic maturation of  the proximal

oocyte122,105. Concomitantly, MSP promotes sheath cell contraction, leading to ovulation106.

As the oocyte is pulled into the spermatheca, fertilization takes place138. After the spermath-

eca, the embryo passes to the uterus where it completes the first several cell divisions before

being laid99. The dynamics of  egg-laying are known to be bursty, but the time intervals between

these bursts are typically on the order of  minutes139, much shorter than the time intervals at

which we counted eggs. Therefore we need not consider these dynamics in our model.

The reproductive rate, while approximately constant early in adulthood, decreases as the

animals age140. This decline in reproductive function likely has multiple causes. In the first

several days it likely reflects the decreasing number of  sperm and the coupling of  ovula-

tion to sperm number137, because mating during this period can produce substantially more

progeny141,142. After approximately 5 days oocyte quality also becomes compromised143,144,
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and mating of  week-old hermaphrodites does not increase their brood size142. At lower tem-

peratures (e.g., 20°C), nearly all of  a hermaphrodite’s sperm are used to fertilize eggs108. How-

ever, it is reasonable to expect that chronic exposure to higher temperatures will result in ga-

mete death. While developing oocytes are likely damaged by chronic temperature stress, they

can be continuously generated, thus their destruction is difficult to decouple from a decrease

in their production rate. We thus captured this process by allowing net oocyte production

rate in the model to vary with temperature. These assumptions, and their related mass action

kinetics, yield expressions for the rate of  ovulation and the rate of  sperm death,

F 0
0 = k∗

0OSa ,(4.2)

F s
d = kdSa(4.3)

where Sa is the number of  active sperm, is a rate constant of  ovulation, and is a rate

constant of  sperm death.

Because O rapidly achieves a steady state122, we simplified the model specified in Equations

4.1, 4.2 and 4.3 using a quasi-steady-state approximation145. We found that this reformulation

results in a model that captures the system dynamics equally well (see next section). We ex-

plicitly solved the steady-state mass balance equation to obtain O = kg/(ks + k∗
oSa). This

allowed us to express the dynamics of  the system using a smaller subset of  parameters. In the

interest of  parsimony, we use the parameter kmax to summarize the intrinsic maximum rate

of  oogenesis,
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F o
o = min

koSa

kmax


(4.4)

where ko = ksk
∗
o/(ks + k∗

oSa).

Together, these assumptions can be combined into a system of  mass balance equations

describing the dynamics of C. elegans reproduction.

dO

dt
= F o

g − F o
o

= kg − ksO −min

koSa

kmax

 ≈ 0,

dSa

dt
= −F o

o − F S
d

= −min

koSa

kmax

− kdSa.

(4.5)

In our experiments, we observed substantial variability in both the overall fecundity and

the dynamics of  egg-laying among individuals. We hypothesized that this variability arises from

differences in the intrinsic capacity (kmax) for oogenesis and the number of  sperm produced

by each animal, both of  which we surmised are normally distributed (Figures 4.2A, B). The

rate of  sperm production is constant over time79, and high sperm count is associated with
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Figure 4.2. Chronic temperature stress exposes heterogeneous physiological response
of the reproductive system in C. elegans. The brood sizes for animals reproducing at
20 (A) and 25°C (B) are normally distributed. However, at higher temperatures, 28
(C) and 29°C (D), the distribution of brood sizes reflects a heterogeneous population.
At these temperatures, the brood size distributions (solid lines) can no longer be
approximated as single normal distributions. Instead, each is better explained as a
mixture of two distinct components (dashed lines), the relative weight of which is
dependent on temperature. Red boxes in the left panels highlight the data shown in
the right panels.
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delayed onset of  oogenesis141. To capture this, when simulating our model, the number of

sperm of  each individual and the timing of  the onset of  embryo production were determined

by the same variable drawn from a normal distribution.

Recalling the heterogeneity of  brood sizes at higher temperatures (Figure 4.2), we reasoned

that the fraction (δ) of  animals that exhibit a nonrobust reproductive output varies with tem-

perature, and treated δ as a free parameter. Although the mean-field behavior of  our model can

be analytically solved, we solved it numerically. We used maximum likelihood estimation146

to determine the kinetic parameters for our model. Interestingly, our estimates of kmax were

substantially different for the two classes.

We used time-resolved, densely sampled egg-laying curves collected at 20, 25, and 29°C

(Table 4.1, Figure 4.2) to train our model for both the robust and non-robust classes of  animals.

Noting the narrow range of  relevant temperatures, we hypothesized exponential dependence

of  the model parameters on temperature. Because δ is only nonzero at 28°C and above, we

used curves collected at 20, 28, and 29°C to estimate its value more robustly. The estimated

coefficients of  these exponential functions (Figure 4.4A–C) result in model predictions that

closely recapitulate the empirical data (Figure 4.4D).

4.4.3. More complicated models do not offer an improved description of

the system

To obtain Equation 4.4, we surmised that the dynamics of  oocyte development are steady-

state122, and the number of  developed oocytes O is constant. To ensure that this approxima-

tion does not lead to an overly simplistic model that fails to capture aspects of  reproductive
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dynamics, we evaluated predictions for two distinct model formulations. The first assumed

that O reaches a quasi-steady-state according to Equation 4.4. This simplified model is fully de-

scribed in Equation 4.5. The second was more complicated, explicitly accounting for oocyte

generation and development (Equations 4.1 and 4.2) and allowing O to vary. Only subtle

quantitative differences existed in the predictions of  these two models, justifying the use of

the parsimonious version (Figure 4.5A).

To ensure that the parsimonious model (Equation 4.5) does not omit other details that

could improve the description of  the system, we constructed an alternative model with an

additional component that plausibly exists in the reproductive system: oocyte death. In a

model that explicitly included discrete states for dead oocytes (Od) (Figure 4.5B), the rate of

oocyte accumulation becomes,

dO

dt
= F o

g − F o
o − F o

d

= (kg − ksO)− (k∗
oOSa)− (ko

dO),

(4.6)

where ko
q is the rate constant of  oocyte death. Reformulating Equation 4.6, we obtain,

dO

dt
= kg − k∗

oOSa − (ks + ko
d)O

= kg − k∗
oOSa − k∗

sO,

(4.7)
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where k∗
s = ks + ko

d. Because this expression is mathematically equivalent to Equation

4.5, it is difficult to differentiate between this model that accounts for oocyte death from the

more parsimonious model formulated above (Equation 4.5).

A

B

Figure 4.3. Modeling the dynamics of C. elegans reproduction. The reproductive
system of a hermaphrodite consists principally of three compartments: the somatic
gonad, spermatheca, and uterus (A). The model tracks gametes through these com-
partments according to mass-action kinetics and parsimonious biological rules (B).

4.4.4. Testing predictions of the model

Our modeling framework provides the basis for predicting the behavior of  animals treated un-

der different conditions and having different genetic backgrounds. As a first test, we generated
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Figure 4.4. Fitting the model to experimental data. Because the reproductive dy-
namics are strongly temperature dependent, we let the three model parameters vary
as exponential functions of temperature (A-C). As expected, all parameters increased
with temperature. Red circles represent the estimated parameters values for the three
temperatures used to train the model. Constraining model parameters yielded close
fits to experimental observations, represented by dots ± 1 standard deviation (D).
Model predictions (solid lines) ± 1 standard deviation (dashed lines) are shown for
comparison.
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predictions of  the dynamics of  reproductive output following chronic temperature shifts con-

ducted under the same experimental protocol that was used to train the model, but at three

different temperatures. At 23, 28, and 30°C, we observed a close correspondence between

predicted values and experimental results (Figure 4.6). Predictions were obtained using pa-

rameters estimated from the training data (Figure 4.4); the only additional information that

was specified was the temperature to which the animals were exposed. Importantly, in ad-

dition to the quantitative matches obtained for the population means, we also observed a

correspondence between predicted and experimentally measured animal-to-animal variances

of  brood sizes.

As a second test, we probed the reproductive dynamics of  two mutants, tra-3(e2333) and

cdc-48.1(tm544), that produce different numbers of  offspring than the wild-type N2 strain.

In our experimental paradigm, at 20°C these two mutants produced 437±40 and 238±115

progeny, respectively. At least two lines of  evidence suggest that availability of  sperm is the

limiting factor in C. elegans reproduction. First, self-fertile hermaphrodites continue laying

unfertilized eggs once their cache of  sperm becomes exhausted147. Second, hermaphrodites

that are mated to males generate up to four times the number of  progeny as their unmated

counterparts because male ejaculate provides many more sperm than the number produced

by a hermaphrodite141. Relevantly, the cdc-48.1(tm544) mutant animals lay approximately as

many eggs as the wild type, but a substantial fraction of  these oocytes are not fertilized. We

therefore reasoned that the number of  progeny of  individual animals accurately reflected the

number of  sperm they produced. Using these inferred sperm counts and the model parameters

estimated from the training data (Figure 4.4), we predicted the dynamics of  the reproductive
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output of  the two mutants. At 20 and 25°C, predictions for the cdc-48.1 mutants matched the

experimental results, as did predictions for the tra-3 animals at 20°C (Figures 4.7A, B). At 25°C,

however, the tra-3 mutants laid fewer embryos than predicted by our model (Figure 4.7B). We

investigated the plausible causes of  this discrepancy. At 20°C the embryos of  both the wild-

type N2 and tra-3 animals were arranged in an orderly fashion within the uterus (Figure 4.7C,

D). At 25°C (Figure 4.7E) the embryos in wild-type animals were more numerous than at 20°C,

but this effect was far more pronounced in the tra-3 mutants, which had retained embryos

that were older than the age at which they are typically laid (Figure 4.7F). The number of

embryos retained by individuals correlated with the sperm count, such that retention in the

tra-3 animals was substantially higher than in the wild-type (Figure 4.7G). We interpreted this as

an indication that our model over-predicted the number of  eggs laid because it did not consider

the accumulation of  eggs in the uterus and its possible consequences. The total number of

eggs laid and retained in the uterus of  the tra-3 animals at 25°C was indistinguishable from

that in the wild-type N2 animals under the same conditions. In contrast, at 20°C tra-3 mutants

produced nearly 50% more offspring (437 vs. 302) reflecting a greater number of  sperm.

Together, these results suggest that a higher aggregate egg-laying rate at 25°C results in higher

egg retention which causes a mechanical impediment to the passage of  eggs and therefore

disrupts reproduction.

The accumulation of  embryos inside the uterus led to a “bagging” phenotype148 and even-

tual hatching within the parent (Figure 4.7H). Significantly, the bagging phenotype of  the tra-3
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Figure 4.5. More complicated models do not offer an improved description of the
system. Explicitly accounting for oocyte development (blue) is nearly indistinguish-
able from the quasi-steady-state approximation (red) (A). Including a discrete state
for dead oocytes (B) complicates the model, but leads to a description (Equation
4.7) that is mathematically equivalent to the parsimonious model (Equation 4.5).

mutants was completely suppressed by an egl-19(ad695) mutation that causes constitutive egg-

laying149. This suggests that the mechanical elements of  the egg-laying apparatus were com-

promised by chronic heat stress, serving as a physical impediment to achieving the maximum

rate of  egg-laying and, therefore, the highest brood size given the number of  available sperm.

4.5. Discussion

We developed a macro-level, parsimonious model that although it incorporates few of  the

known elements of  the reproductive system of C. elegans is sufficient to make quantitatively ac-

curate predictions of  the dynamics of  reproduction under stress. Using detailed, time-resolved

experimental data, we demonstrated that the model predicts reproductive dynamics of  animals

in a number of  environmental and genetic backgrounds. While the molecular details under-

lying reproduction undoubtedly are numerous and complex, we have shown that a minimal

model of  a process can be sufficient for capturing system dynamics. We were able to infer a
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Figure 4.6. Predicting the dynamics of C. elegans reproduction. Predicted egg-laying
trajectories (sold lines are median predictions; dashed lines are ± 1 standard devia-
tion) for animals shifted to 23, 28, and 30°C quantitatively capture the experimental
data (dots; ± 1 standard deviation).

minimum set of  essential elements that are sufficient to describe the temperature-dependent

dynamics of  reproduction in C. elegans.

The reproductive systems of  individual C. elegans worms exhibited a heterogeneous re-

sponse to temperature stress, manifested as more variable brood sizes. Several possible ex-

planations can account for this phenomenon. Animals at higher temperatures might have an

increased probability of  a discrete failure event. This could plausibly give rise to two popula-

tions of  animals some reproducing at a relatively high rate, similar to (although slower than)

that at lower temperatures and some that have a broken reproductive system. Under this sce-

nario, the combined distribution of  brood sizes at a given temperature could be described as

a mixture of  a normal distribution, corresponding to robustly reproducing animals, and an

exponential distribution, reflecting waiting time to a failure event (Figure 4.8A).



82

Time (h)

A

B

E

DC

F

G H

A
cc

um
ul

at
ed

 E
gg

s
A

cc
um

ul
at

ed
 E

gg
s

48 96 144 192 240 288
0

100

200

300

400

500 tra-3(e2333)
cdc-48.1(tm544)

48 72 96 120 144 168 192
0

50
100
150
200
250
300
350

20°C 25°C

0

5

10

15

20

25

N2
tra
-3

E
g
g
s 

re
ta

in
e
d

N2
tra
-3 N2

tra
-3

eg
l-1
9/t
ra-
3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

B
a
g
g
in

g
 f

ra
ct

io
n 20°C 25°C

N2
tra
-3

eg
l-1
9/t
ra-
3

Figure 4.7. Predicting behavior of C. elegans reproductive mutants. The reproduc-
tive dynamics of tra-3 and cdc-48.1 mutants at 20°C (dots; ±1 standard deviation)
are well described by the model (solid lines are median predictions; dashed lines are
±1 standard deviation) (A). At 25°C, tra-3 animals produce fewer progeny than pre-
dicted (B). Embryos are arranged in an orderly fashion in N2 animals at 20 (C) and
25°C (E) and in tra-3 mutants at 20°C (D), but not at 25°C (F). Consequently, tra-3
mutants retain more embryos in the uterus than N2 animals (G; average number
per worm is shown; ±1 standard deviation). Bagging phenotype of tra-3 mutants is
rescued by an egg-laying constitutive mutation egl-19(ad695) (H).
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Figure 4.8. Alternative interpretations of the heterogeneous response to stress by
individual nematodes. At permissive temperatures (≤25°C) brood sizes are well
described as normal distributions (as shown in Figure 4.2). However, at higher tem-
peratures (≥28°C), the brood size distributions diverge from normal, and a mixture
of two distributions is required to describe the data. Two different combinations of
distributions could account for the observations. In both cases a fraction of the overall
population consists of worms reproducing robustly; these are described by a normal
distribution (blue). An exponential distribution (red) could indicate that chronic
stress causes random reproductive failure among individuals in the population (A).
A normal distribution (red) would suggest that subpopulations of individuals de-
ploy qualitatively distinct reproductive strategies (B). Regardless of the explanation,
there is a dichotomy of reproductive behaviors among individuals within populations
under temperature stress.

Alternatively, the observed heterogeneity could be indicative of  a dichotomy of  reproduc-

tive strategies (Figure 4.8B). Phenotypic switching the responsive or stochastic shift between

two discrete modes of  behavior has been shown to be an important part of  adaptation to

environmental stress in unicellular organisms. Our results are consistent with the possibility
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that animals adopt aggressive or conservative strategies by altering the rates of  oocyte develop-

ment. At higher temperatures, more worms shift from aggressive (fast) to conservative (slow)

egglaying behavior. In our model, the primary difference between these populations is kmax,

the initial egg-laying rate before signal from sperm becomes rate limiting. It is conceivable that

the observed heterogeneity could represent a bet-hedging approach in which some individ-

uals in a population continue reproducing ‘expecting’ conditions to become favorable soon,

while others delay reproduction until conditions improve. Such a strategy may be favorable

for coping with the ever-changing environment150.

Our results serve as a demonstration of  the utility of  macro-level modeling for under-

standing complex biological systems. We can envision the application of  similar models to the

understanding of  other phenomena that involve mass transfer. Examples would include gas

exchange in the respiratory system, filtration in the excretory system, and nutrient extraction in

the intestine. More broadly, any system that consists of  an orderly transition between defined

compartments or states could be amenable to the type of  analysis presented here. This would

include development and tumorogenesis. Considerable, time-resolved experimental data are

essential as well as the knowledge of  the initial conditions and at least some interactions within

the system. We believe that macro-level modeling can serve as a useful complement to more

fine-grained approaches in the analysis of  complex biological systems.
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4.6. Materials and Methods

4.6.1. Strains

Caenorhabditis elegans Bristol wild-type N2, as well as CB4419(tra-3(e2333))151, FX544(cdc-48.1(tm544))152,

DA695(egl-19(ad695))149, and YR27(egl-19(ad695)/tra-3(e2333)) mutants, were maintained at

20°C as described in Brenner6. CB4419(tra-3(e2333)) is an allele of tra-3 that is not temper-

ature sensitive and does not affect the somatic gonad151. This allele causes a delay in the

switch from spermatogenesis to oogenesis and a concomitant increase in the number of  sperm.

FX544(cdc-48.1(tm544)) is a deletion mutant of  a gene that regulates tra-1. In this mutant, the

switch from spermatogenesis to oogenesis is premature and fewer sperm are produced152.

DA695(egl-19(ad695)) is a mutation in the α1 subunit of  an L-type voltage-activated Ca2+

channel that causes myotonia and constitutive egg laying. Mutant strains were obtained from

the Caenorhabditis Genetics Center. To construct the double mutant, YR27(egl-19(ad695)/tra-

3(e2333)), CB4419 males were mated to DA695 hermaphrodites. The progeny were allowed

to self  and double mutant candidates were selected on the basis of  empty uterus and large

brood size phenotypes. The genotype was confirmed by sequencing.

4.6.2. Egg-laying experiments

To standardize the environment for nematode development, we prepared 60mm NGM agar

plates 48 to 62h prior to experiments using 10mL of  medium per plate and seeded these

plates with 100µL of  saturated OP50 culture 24h before nematodes were transferred onto the

plates. We prepared synchronized cultures of  L1 larvae using hypochlorite treatment of  gravid

hermaphrodites153. The liberated eggs were left on a shaker for 18±3h at room temperature
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(23–24°C) in M9 buffer—sufficiently long for the population to arrest at the L1 molt. The

L1 larvae were placed onto the plate in contact with bacteria to synchronize the sensing of

food and the termination of  L1 diapause. This transfer of  L1 larvae corresponds to 0h in

relation to L1 arrest and serves as the benchmark for timing in the rest of  the experiments.

The developing nematodes were maintained at 20°C and microscopic examination of  worms

at 44h post-L1 arrest confirmed that more than 92% of  nematodes were late-L4. Since a thin

bacterial lawn with a small area increases both the density and visibility of  laid eggs, we seeded

new NGM plates with 5µL of  1:1000 dilution of  saturated OP50 culture in Lysogeny broth

(LB) 24±2h after L1 arrest. We transferred single nematodes to the new NGM plates 1–2h

before the temperature shift.

The time designated for temperature shift was determined for each strain by enumerating

eggs in the gonad and fertilized embryos in the uterus. At 48, 50, 52 and 54 hours post L1

arrest, we examined twenty-five worms from each strain and counted the number of  mature

oocytes in the anterior and posterior gonads as well as the number of  fertilized embryos in

the uterus. Compared to N2, FX544 and CB4419 animals were delayed about three hours

but otherwise appeared normal. The plates were moved into incubators at the experimental

temperature shortly after the nematodes reached young adulthood: 48h for N2, and 51h post-

L1 arrest for and FX544 and CB4419 mutants. We measured temperature in each of  the

incubators with recording thermometers and discarded any time courses in which fluctuations

were greater than 1°C.

We counted the total number of  embryos on a plate manually using a dissecting micro-

scope. We measured time courses at 2h intervals for the first 12h. For longer time courses
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at lower temperatures (20 and 25°C), we collected additional measurements every 12h until

egg-laying had ceased. To avoid unnecessary and possibly confounding temperature fluctua-

tions for the time points recorded at 2h intervals, we used new animals for each time point and

discarded the plates after the number of  eggs had been counted. To avoid the accumulation

of  offspring for time points recorded at 12h increments, we removed the nematodes from the

incubator, transferred them to new plates and returned them to their incubators within 10±5

minutes of  their removal.

Experiments for each temperature were replicated on different days at least four times

with at least one experiment in both the Morimoto and Ruvinsky laboratories. Thermometers

between laboratories were within 0.1°C. Analysis of  the individual trials suggests that small

variations in developmental timing at the onset of  stress contribute significantly to the variation

in the total eggs laid.

4.6.3. Viability and motility experiments

Populations of  nematodes were synchronized as described above with the following notable

exceptions: (i) the worms were not transferred onto new plates before exposure to stress

conditions; (ii) we stressed populations of  20–40 animals instead of  using plates with single

nematodes; (iii) we seeded the plates used for developing worms with 5µL of  1:1000 dilution

of  saturated OP50 culture instead of  saturated OP50 culture.

Viability and motility were assayed at 12h increments by removing a different set of  animals

from the incubator at each time point, completing the measurements at room temperature,

and discarding the worms. We touched animals with platinum wire to assess if  they were motile
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or dead. Animals were scored as motile if  they crawled at least one body length after gentle

touch. Animals were scored as dead if  they were unresponsive to touch and did not exhibit

pharyngeal pumping.

These experiments were replicated on different days at least three times in the Ruvinsky

Lab for each temperature. An average of  164 and 235 animals were used for each time point

at 30 and 31°C, respectively. Time points were counted by multiple lab members to limit

operator error.

4.6.4. Egg retention experiments

Synchronized cultures of  N2, CB4419, FX544 and DA695 were prepared and plated as for the

egg-laying protocol described above. Twenty worms were singled for each temperature tested.

At t=0 (48 hours post L1 arrest for N2 and DA695 and 51 hours post L1 arrest for CB4419

and FX544), the twenty plates were shifted to 20, 25 or 28°C. After twenty-four hours of  heat

stress, the adult hermaphrodites were dissolved on the plate in 10µL of  alkaline hypochlorite

solution and the eggs that had been retained in the worm were counted. Two trials were

conducted for each strain.

4.6.5. Statistical analysis

We used the permutation test (Efron 1994), a bootstrapping procedure, to compare distribu-

tions of  brood sizes (Figure 4.2) and coefficients of  variation between brood sizes at different
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temperatures. For each comparison, the bootstrapping was repeated 106 times. The esti-

mated probability that the data could be observed, given the null model is, is the fraction of

bootstrapped results that is at least as extreme as d.
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CHAPTER 5

Concluding Remarks

Throughout my Ph.D., I have focused on collecting data that is most conducive to mathemat-

ical modeling. I strived to build the kind of  tool that dissects long-term changes in behavioral

qualities from a set of  individual nematodes. My primary goal in this thesis was to quantify and

mathematically model the dynamics and individual variability of  complex behavioral pheno-

types of  movement and reproduction in C. elegans. I have attempted to maximize two primary

qualities in my data that are typically very manually intensive to collect: (1) quantify a large

number of  individuals and (2) record them for long periods of  time. Collecting data on a large

number of  individuals for every experimental condition increases reproducibility, statistical

power, and allows us to investigate the set of  behaviors coexist in the same population. Track-

ing animals over long periods of  time increase the accuracy of  each behavior profile and can

reveal long-term shifts in behavior.

In Chapter 2, I introduced WALDO, an open-source software suite that builds on existing

tools to provide long-term movement analysis of  individual C. elegans while maintaining the

identity of  each animal in a free moving population. The system is designed to detect the

spread of  individual variation and dynamic changes over time while minimizing the effort

required to collect large sample sizes. The ability of  WALDO to disambiguate the multitude

of  tracks generated on an agar plate containing up to 60 adult animals up to a full day of



92

recording required the implementation of  a directed acyclic network to convert thousands of

short tracks into long contiguous trails that show how individuals slowly change over time.

In chapter 3, I used the WALDO system to track healthspan. We used the system to

record the movement of  wild-type worms every day for the entirety of  their active adult lives.

We convert the tracks from each recording into a suite of  behavioral measurements including

metrics for posture, orientation, and general activity. I converted the multivariate time-series

of  behavioral measurements into a set of  features that can easily be used to compare the

primary behavioral attributes of  each worm. The first set of  behavioral differences I detected

is a decline in curvature, a rise in fall in speed when agitated, and an increase in how long

it takes for animals to return to a basal state after agitation. A preliminary version of  the

behavior profile was converted into a network representing the similarities between behaviors

of  individual animals at different stages of  adulthood.

In Chapter 4, I demonstrated the utility of  computational modeling of  dynamic egg-laying

data collected from thousands of  individuals. I used a standard approach from process engi-

neering as a mathematical framework to model the production of  progeny under a set of  dif-

ferent environmental temperatures. Our model combines basic assumptions about signaling

between spermatozoa and oocytes with engineering modeling approaches to explicitly track

the progression of  gametes through several states. This lead to a remarkably small number of

essential features that describe the system yet still provided predictive accuracy.
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5.1. Experimental Applications

The primary accomplishment of  my thesis is the development of  a system for quantifying

healthspan with minimal experimental overhead by tracking, analyzing, and comparing behav-

ioral profiles of  movement for dozens of  individuals for hours at a time. This system has

direct applications for the study of  environmental stress, diet, reproduction, small molecule

therapeutics, and hereditary diseases.

5.1.1. The Behaviors of Stress Resilience

Environmental stresses, such as increased temperature, cause a stress response in organisms.

Much of  the stress response’s molecular machinery is linked to aging, protein misfolding, and

neurodegenerative diseases. Raising the temperature is a simple perturbation that can reveal

how the animals respond to stress. It also opens the door to investigate the set of  tempera-

ture sensitive strains that develop differently under different temperature conditions (such as

worms that develop with or without reproductive organs). More fundamentally, the behavioral

observation of  animals during and after stress exposure can lead to a much better understand-

ing of  the worm’s strategies for avoiding and coping with stress. By tracking subtle behaviors,

we can quantify which physiological processes are shut down and rebooted after a transient

stress. If  behavioral markers for resilient individuals can be identified, those individuals could

be isolated for biochemical analysis of  stress resilience.
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5.1.2. Isolating Behavior During Reproduction

The reproductive cycle has been associated with a sharp decrease in lifespan and is the most

likely cause of  shifts in behavior during the first several days of  adulthood. For example, the

animal’s ability to mount a stress response dramatically decreases during the onset of  self-

fertilization30. The link between behavioral changes and the animal’s reproductive period,

however, is difficult to explore fully since the vast majority of C. elegans are self-fertilizing

hermaphrodites. One could analyze the behavior differences between reproducing and non-

reproducing animals by tracking temperature sensitive mutants that lack oocytes or gonads at

non-permissive temperatures. Thus, it may be possible to recognize reproductive defects in

worms that have not yet been diagnosed with disruptions in the reproductive system.

5.1.3. Network-Based Approach to Dietary Analysis

Diet is another primary factor in health and aging. In the laboratory, C. elegans are raised on

bacterial monocultures. Indeed, variations in their bacterial food source have been shown to

have a significant impact on lifespan46,154,155. Uncovering what aspects of  a bacterial species

significantly influence the worms health is a major difficulty in this area. One could map

out the relationships between different food sources by tracking how much time each animal

spends feeding, quiescent, or searching for other food. The bacterial attributes that most likely

influence worm health could be extracted by constructing a network of  behavioral phenotypes

and comparing the structure of  relationships against existing databases of  bacterial informa-

tion. This approach uses the worm’s behavior as a highly sophisticated sensor for detecting

key differences and relationships across the spectrum of  bacterial food sources.
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5.1.4. Behavioral Assessment of Disease

‘Disease models’ describes a set of C. elegans strains that have been genetically engineered to

express a protein or peptide that is known to be deleterious in humans. These models allow

researchers to examine how certain proteins disrupt biological systems as well as what small

molecular therapeutics might help the organism respond. The ability to track the behaviors of

these animals would offer a sensitive readout that could reveal improvements in an animal’s

healthspan or reveal potential behavioral side-effects caused by therapeutics. Furthermore,

identifying how the deleterious peptide disrupts biological pathways is both a major difficulty

and a primary goal in this area of  research. Previous studies have shown that similar behav-

ioral phenotypes arise from different disruptions in the same signaling pathways. This finding

means that a network-based approach, with enough strains, could reveal which molecular

pathways are most likely being disrupted and which disease models are most closely related.

5.2. The Future of C. elegans Behavioral Analysis

Today, phenotypic data is collected on a case-by-case basis; however, a full phenotypic behav-

ioral catalog would allow researchers to relate each molecular pathway to the functioning of

the whole organism. A behavioral catalog could integrate with the existing ways of  dissecting

C. elegans biology such as the cell lineage, neuronal network, and genetic code. For example,

a close match against a detailed behavior profile might reveal that a worm has a disruption

in a particular set of  neurons. In the ideal case, the movement behaviors of  large numbers

of  individual worms would be tracked from hatching to their death to reveal the variations in

lifespan and behavioral profiles.
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There are several technical hurdles in the way of  implementing such a system: (1) the prob-

lem of  storing and processing enough data, (2) the ‘shell game’ problem in which individual

animals are mistaken for one another, (3) the control of  a standardized environment (4) the

population explosion problem that arises when any group of  worms are tracked for several

days, and (5) the development of  algorithms to create and compare many high-dimensional

behavioral profiles. In this thesis, I have worked on ways to solve the ‘shell game’ problem and

have significantly pushed the limits of  how many individuals can be tracked for long periods of

time. Furthermore, I have also attempted to create a set of  computational approaches to ana-

lyzing high dimensional behavioral profiles. While I have not directly tried to solve the other

difficulties, they are becoming more and more feasible with the increasing sophistication of

computational infrastructure, robotic automation, and microfluidic devices. A near complete

phenotype catalog would provide immensely powerful means to focus research projects on

the biological processes that strongly affect the whole organism.

5.3. The Future of Human Behavioral Analysis

While I have focused on the behavioral quantification of C. elegans, there is a human-relevant

lesson in testing the limits of  behavioral quantification. In humans, step frequency and con-

sistency has been used as an early diagnostic for Alzheimer’s disease and Parkinson’s dis-

ease156–159. As devices for data collection proliferate, we are switching away from a bottleneck

in data acquisition to a bottleneck in our ability to analyze and interpret multivariate behavioral

data. The relative feasibility of  total behavior characterization of C. elegans is precisely what

makes it so interesting as an experimental model organism. Mapping the genome, the cell

lineage, and the neuronal network in C. elegans made it clearer what was possible or impossible
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for larger, more complex animals. The spectrum of C. elegans behavior is a reasonable testing

ground for many of  the computational approaches we might implement for human analysis.
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APPENDIX A

Supporting information to Chapter 2

A.1. Supplementary Methods

C. elegans strain and culturing. All assays were conducted with the wild-type Bristol isolate

of  Caenorhabditis elegans (N2), obtained from the Caenorhabditis Genomic Center (CGC).

Standard methods were used for culturing and observing C. elegans32. Nematodes were grown

at 20°C on 60 mm nematode growth medium (NGM) plates seeded with Escherichia coli

OP50 strain. To obtain the age synchronized population of  eggs, gravid adults were allowed

to lay eggs for 30 min on OP50 plates and were then removed. The eggs were allowed to

hatch and develop into young adults (day 1 of  adulthood) at 20 °C.

Motility Experiments. All recordings were performed inside of  a Percival I-36NL C8

incubator to ensure a constant temperature environment. Recordings were captured using

three Dalsa Falcon 4M30 (monochrome, 4 megapixel, 30 frames per second) cameras with

Rodenstock 60 mm f/4.0 enlarging lenses connected to Dell Optiplex 790 (Intel i5-2400, 4

GB RAM) computers with a National Instruments Camera Link card running the Multi-Worm

Tracker as described previously21. The Multi-Worm Tracker settings used were: 7% object

Contrast, 50% fill hysteresis, 10% object size hysteresis, 1 Image Binning, 10 Image Adaptation

Bands, an Adaptation Rate of  5, 100 frames of  Adaptation, and an object boarder of  20. We

also used Using Dark Objects, Skeletonize, Contour, Aggregate Output, and the Bit Depth
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from the Camera. A raw image was saved every one to five minutes for regular recordings.

For recordings explicitly used for validation, an image was saved every second.

Recordings were performed on 60 mm NGM plates seeded with 200 ?L of  OP50 bacteria,

covering the entire surface of  the agar. A custom-made copper frame with 3.3x2.4 cm interior

dimensions was placed onto the bacteria in order to prevent worms from leaving the field

of  view. Ten to sixty day-1 adult animals were transferred onto the bacterial lawn inside the

copper frame. The plates were moved into the recording incubator and allowed to acclimate

to the interior temperature for 30-60 minutes to prevent condensation on the plate lid. Before

recordings began, plates were manually tapped to stimulate movement and recordings were

started within 30 seconds.

For temperature-shift experiments, worms were raised to day-1 adulthood and transferred

to recording plates with OP50 as previously described. The recording plates were placed into

an incubator set to either 15, 20, or 25 °C. Plates were allowed to acclimate to the incubator’s

temperature for 30 minutes before they were tapped and recorded for three hours.

Centroid Speed Calculations. WALDO stitches together tracks from multiple track

fragments, which often leaves multiple gaps in observing an animal’s trajectory. While per-

forming analysis of  centroid speeds, we linearly interpolate centroid positions for missing sec-

tions less than 1 second as the worm’s position remains relatively constant over such a short

time. Missing sections longer than one second were excluded from analysis. To reduce jitter in

worm position, the x and y coordinates for each continuous track portion were smoothed us-

ing a one second running average. To extract a cleaner movement profile, worm speeds were

smoothed using a one-minute running average. To create the aggregated speed profiles for all
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worms on one or more plates, worm speeds from all individuals were binned on one-minute

intervals and the mean from each bin was plotted.

Identifying Collisions. This network motif  in Figure 2a is not unique to collisions and

can arise from other processes and errors in track creation. Further profiling of  actual col-

lisions reveals that frequently, at least one of  the worms in a collision crawls for a distance

greater than 1 body-length distance before or after making contact with another worm. We

use this observation as our primary means to identify collisions and flag any blobs that match

this criterion and occupy the ?node c? position in the collision motif. Resolving the Identi-

ties of  Colliding Animals. In order to untangle worm identities during two-worm collisions,

WALDO counts the total number of  overlapping pixels between the last blobs in the pre-

collision tracks and the first blobs in the post-collision tracks. If  one matched pair has a larger

amount of  overlap than the other matched pair (at least 10 more pixels), then) than we sur-

mise that it is the correct pre- and post-collision pairing (Fig. 2b). After the identities of  the

worms are determined, we remove the compound track ?C? from the network and connect

each pre-collision track with the appropriate post-collision track.

Validation of  WALDO Operations. In order to test the efficacy of  WALDO?s data

cleaning operations, we used two one-hour recordings of  plates seeded with op50 that con-

tained 40 to 70 animals within the field of  view. In order to test WALDO in a more challenging

environment, no copper frame was used to contain the animals. During real time tracking,

images were saved every second. Manual screens were performed in order to create gold-

standard data sets for which we could test if  collisions were correctly identified, if  collisions

were correctly resolved, and if  missing arcs were correctly inferred. Each of  these screens
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involved generating a specific set of  before and after images for which a manual curator could

rapidly assess.

Literature Survey. Papers were included in the literature search if  they met the following

three criteria: (1) a motility assay was performed using crawling worms, (2) software was used

to track some aspect of  the animal’s behavior, and (3) the duration of  observation was reported

in the text of  the paper. We reported the acclimation time worms have without any stimulus

before they are observed and how long the animals were observed for. A full table of  the

findings is included in Supplementary Table 3.

Distribution of  Software and Source Code. We are releasing the source code for

WALDO under the MIT open source license and the code repository is freely available for

download (https://bitbucket.org/peterbwinter/waldo). A compiled version of  WALDO for

Windows 8 is included in Supplementary Software. Newer versions of  the user manual and

compiled code will be made available as well (http://amaral-lab.org/resources/software/waldo).

A.2. Supplementary Figures and Tables
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Supplemental Table 1: Network operations performed on recordings.

total MWT WALDO resolve infer

id minutes #worms tracks tracks difference prune consolidate collisions gaps

20150504_123807 180 5 698 13 291 0 183 108 0

20150505_111654 180 10 677 13 483 1 233 243 6

20150505_150046 180 10 1964 51 1499 6 830 624 39

20150506_115813 180 10 3175 204 2833 64 1606 1143 20

20150506_153738 180 5 579 24 447 15 175 255 2

20150507_103013 180 10 2367 67 2278 8 1231 1032 7

20150507_144556 180 5 411 10 389 5 128 255 1

20150508_105539 180 10 990 39 949 5 399 531 14

20150511_121312 180 10 1123 101 899 0 452 402 45

20150511_121317 180 10 1075 27 812 0 486 324 2

20150511_121322 180 10 1334 35 1289 0 721 567 1

20150511_160114 180 30 8650 257 8393 9 4426 3957 1

20150511_160118 180 20 3594 104 3474 0 1877 1596 1

20150511_160123 180 10 1857 74 1763 3 1138 612 10

20150512_110456 180 10 3273 40 2216 0 1293 921 2

20150512_110519 180 10 852 34 817 0 295 522 0

20150512_110526 180 10 860 47 747 4 240 495 8

20150512_165039 180 60 33940 2653 31270 34 15609 15507 120

20150512_165044 180 50 28642 2760 25831 32 11561 14076 162

20150512_165052 180 40 13715 907 12759 19 4461 8234 45

20150513_112911 180 10 1299 38 1201 8 496 693 4

20150513_112917 180 10 1705 64 1287 2 358 924 3

20150513_144241 180 10 10611 66 1173 2 336 753 82

20150513_144253 180 10 1371 72 1230 2 497 729 2

20150513_144302 180 10 740 37 668 3 189 471 5

20150514_121513 180 10 1041 55 982 0 339 642 1

20150514_121515 180 10 1132 26 898 1 426 468 3

20150514_121528 180 10 857 50 711 2 208 489 12

20150514_164158 180 10 838 36 733 1 278 444 10

20150514_164204 180 10 1454 41 810 1 192 609 8

20150515_124728 180 10 1083 23 921 19 361 534 7

20150515_124736 180 10 1571 79 1343 27 467 837 12

20150515_124840 180 10 1181 32 1109 5 322 780 2

20150515_155539 180 10 654 18 628 0 295 330 3

20150515_155545 180 10 618 20 549 1 173 372 3

20150518_121756 180 10 1014 52 817 4 472 312 29

20150518_121757 180 10 853 32 821 0 478 342 1

20150518_121809 180 10 905 31 871 0 477 384 10

20150518_182452 180 10 473 22 448 0 195 246 7

20150518_182454 180 10 1408 33 1315 18 895 390 12

20150518_182501 180 10 1294 25 1235 1 706 519 9

20150519_122411 180 10 1761 204 1498 4 125 1356 13

20150519_122413 180 10 1159 55 1101 0 498 603 0

20150519_122420 180 10 795 23 761 0 271 489 1

20150519_170520 180 10 676 17 600 0 304 288 8

20150519_170525 180 10 1799 122 1515 11 492 999 13

20150519_170530 180 10 1576 166 1340 0 99 1227 14

table continued next page
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Supplemental Table 1: Network operations performed on recordings.

total MWT WALDO resolve infer

id minutes #worms tracks tracks difference prune consolidate collisions gaps

20150608_121717 180 30 6298 446 5534 14 3226 1977 317

20150608_121725 180 10 1876 30 1828 0 1265 543 20

20150608_121812 180 50 18037 779 16677 76 10841 5220 540

20150608_165515 180 40 10764 460 10174 4 5279 4842 49

20150608_165523 180 60 23539 844 22649 5 13174 9450 20

20150608_165610 180 20 2824 93 1932 1 957 891 83

20150615_124720 180 10 666 25 603 1 276 315 11

20150615_124728 180 10 984 21 907 0 525 378 4

20150615_124738 180 10 2139 47 2053 0 1322 705 26

20150615_170747 180 10 1234 38 1192 1 679 492 20

20150615_170754 180 10 1116 22 1094 1 722 369 2

20150615_170759 180 10 661 17 644 1 307 336 0

20150622_121933 180 40 8204 232 7802 0 4006 3783 13

20150622_121935 180 20 2810 58 2709 3 1603 1092 11

20150622_121940 180 60 19103 808 18076 4 9404 8643 25

20150625_132445 180 10 1560 19 1537 1 909 621 6

20150625_132448 180 10 868 34 789 0 393 390 6

20150625_132449 180 10 1123 45 991 1 632 306 52

20150625_180232 180 10 1139 71 790 14 476 258 42

20150625_180236 180 10 852 17 835 0 448 384 3

20150625_180237 180 10 1409 24 1385 1 823 558 3

20150626_111855 180 40 19319 949 18358 14 10560 7782 2

20150626_173234 180 30 7678 205 7268 5 4584 2646 33

20150626_173245 180 50 22422 1114 19155 33 11377 7509 236

20150626_173250 180 20 3182 119 2917 14 1451 1440 12

20150629_113741 180 40 21186 878 20158 11 13598 6267 282

20150629_113757 180 20 7882 218 7648 1 5405 2232 10

20150629_113803 180 50 17689 727 16924 4 9065 7836 19

20150629_165904 180 10 464 47 381 5 172 186 18

20150629_165915 180 60 24550 1091 22813 23 11951 10734 105

20150629_165920 180 30 5396 282 4980 2 2459 2484 35

20150702_113855 180 10 13665 1909 10340 190 2818 873 6459

20150702_113859 180 10 6613 1585 4429 61 1741 351 2276

20150702_150024 180 10 1510 21 1334 0 977 354 3

20150702_150028 180 10 3573 309 3217 21 2174 864 158

Table A.1. Network operations performed on recordings. Network operations per-
formed on recordings. This table shows basic information about the recording as
well as how many times each of the network operations (Fig. 2.2b) were performed
while correcting each of the recordings.
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Supplemental Table 2: Number of tracks

total # total tracks moving tracks interuptions

id minutes worms MWT WALDO MWT WALDO MWT removed removed (%)

20150504_123807 180 5 698 13 26 5 693 685 99

20150505_111654 180 10 677 13 67 13 667 664 100

20150505_150046 180 10 1964 51 267 38 1954 1913 98

20150506_115813 180 10 3175 204 391 90 3165 2971 94

20150506_153738 180 5 579 24 93 19 574 555 97

20150507_103013 180 10 2367 67 309 46 2357 2300 98

20150507_144556 180 5 411 10 85 5 406 401 99

20150508_105539 180 10 990 39 155 25 980 951 97

20150511_121312 180 10 1123 101 167 69 1113 1022 92

20150511_121317 180 10 1075 27 93 27 1065 1048 98

20150511_121322 180 10 1334 35 143 22 1324 1299 98

20150511_160114 180 30 8650 257 847 176 8620 8393 97

20150511_160118 180 20 3594 104 374 86 3574 3490 98

20150511_160123 180 10 1857 74 167 38 1847 1783 97

20150512_110456 180 10 3273 40 173 25 3263 3233 99

20150512_110519 180 10 852 34 171 32 842 818 97

20150512_110526 180 10 860 47 195 33 850 813 96

20150512_165039 180 60 33940 2653 1387 761 33880 31287 92

20150512_165044 180 50 28642 2760 2005 895 28592 25882 91

20150512_165052 180 40 13715 907 1692 523 13675 12808 94

20150513_112911 180 10 1299 38 241 32 1289 1261 98

20150513_112917 180 10 1705 64 329 53 1695 1641 97

20150513_144241 180 10 10611 66 315 40 10601 10545 99

20150513_144253 180 10 1371 72 281 62 1361 1299 95

20150513_144302 180 10 740 37 191 29 730 703 96

20150514_121513 180 10 1041 55 265 41 1031 986 96

20150514_121515 180 10 1132 26 141 25 1122 1106 99

20150514_121528 180 10 857 50 201 26 847 807 95

20150514_164158 180 10 838 36 129 21 828 802 97

20150514_164204 180 10 1454 41 214 35 1444 1413 98

20150515_124728 180 10 1083 23 164 16 1073 1060 99

20150515_124736 180 10 1571 79 274 58 1561 1492 96

20150515_124840 180 10 1181 32 251 25 1171 1149 98

20150515_155539 180 10 654 18 120 14 644 636 99

20150515_155545 180 10 618 20 140 15 608 598 98

20150518_121756 180 10 1014 52 121 44 1004 962 96

20150518_121757 180 10 853 32 119 23 843 821 97

20150518_121809 180 10 905 31 84 22 895 874 98

20150518_182452 180 10 473 22 112 18 463 451 97

20150518_182454 180 10 1408 33 86 28 1398 1375 98

20150518_182501 180 10 1294 25 95 25 1284 1269 99

20150519_122411 180 10 1761 204 804 160 1751 1557 89

20150519_122413 180 10 1159 55 188 45 1149 1104 96

20150519_122420 180 10 795 23 162 18 785 772 98

20150519_170520 180 10 676 17 53 13 666 659 99

20150519_170525 180 10 1799 122 422 91 1789 1677 94

20150519_170530 180 10 1576 166 692 135 1566 1410 90

table continued next page
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Supplemental Table 2: Number of tracks

total # total tracks moving tracks interuptions

id minutes worms MWT WALDO MWT WALDO MWT removed removed (%)

20150608_121717 180 30 6298 446 330 249 6268 5852 93

20150608_121725 180 10 1876 30 94 21 1866 1846 99

20150608_121812 180 50 18037 779 864 464 17987 17258 96

20150608_165515 180 40 10764 460 832 202 10724 10304 96

20150608_165523 180 60 23539 844 1428 418 23479 22695 97

20150608_165610 180 20 2824 93 242 67 2804 2731 97

20150615_124720 180 10 666 25 105 23 656 641 98

20150615_124728 180 10 984 21 71 17 974 963 99

20150615_124738 180 10 2139 47 95 32 2129 2092 98

20150615_170747 180 10 1234 38 136 31 1224 1196 98

20150615_170754 180 10 1116 22 97 17 1106 1094 99

20150615_170759 180 10 661 17 121 12 651 644 99

20150622_121933 180 40 8204 232 765 176 8164 7972 98

20150622_121935 180 20 2810 58 255 50 2790 2752 99

20150622_121940 180 60 19103 808 1228 392 19043 18295 96

20150625_132445 180 10 1560 19 58 14 1550 1541 99

20150625_132448 180 10 868 34 100 31 858 834 97

20150625_132449 180 10 1123 45 101 31 1113 1078 97

20150625_180232 180 10 1139 71 84 23 1129 1068 95

20150625_180236 180 10 852 17 101 13 842 835 99

20150625_180237 180 10 1409 24 66 13 1399 1385 99

20150626_111855 180 40 19319 949 785 276 19279 18370 95

20150626_173234 180 30 7678 205 561 137 7648 7473 98

20150626_173245 180 50 22422 1114 1232 454 22372 21308 95

20150626_173250 180 20 3182 119 337 78 3162 3063 97

20150629_113741 180 40 21186 878 866 360 21146 20308 96

20150629_113757 180 20 7882 218 196 88 7862 7664 97

20150629_113803 180 50 17689 727 1075 314 17639 16962 96

20150629_165904 180 10 464 47 90 35 454 417 92

20150629_165915 180 60 24550 1091 2136 664 24490 23459 96

20150629_165920 180 30 5396 282 668 174 5366 5114 95

20150702_113855 180 10 13665 1909 1210 1697 13655 11756 86

20150702_113859 180 10 6613 1585 835 554 6603 5028 76

20150702_150024 180 10 1510 21 84 20 1500 1489 99

20150702_150028 180 10 3573 309 326 207 3563 3264 92

table continued next page

Table A.2. The number of tracks before and after running WALDO. This table shows
basic information about the recording as well as how many tracks are present, how
many tracks move at least one body-length, and how many times the tracking of an
animal was interrupted. The number of interruptions was calculated by subtract-
ing the number of worms present in the recording from the total number of tracks
generated.
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Supplemental Table 3: Published worm tracking protocols

single delay duration

title or multi (min) (min) key

Undulatory Locomotion of Caenorhabditis elegans on Wet Surfaces single 2 1 Shen et al. (2012)

A genetic screening strategy identifies novel regulators of  the proteostasis

network. multi 0 1 Silva et al. (2011)

Systematic profiling of Caenorhabditis elegans locomotive behaviors

reveals additional components in G-protein Gαq signaling. single 0 4 Yu et al. (2013)

Bending amplitude - A new quantitative assay of C. elegans locomotion:

Identification of  phenotypes for mutants in genes encoding muscle focal

adhesion components single 2 5 Nahabedian et al. (2012)

Synaptic polarity of  the interneuron circuit controlling C. elegans locomotion single 5 5 Rakowski et al. (2013)

A database of Caenorhabditis elegans behavioral phenotypes single 30 15 Yemini et al. (2013)

Dynamic encoding of  perception, memory, and movement in a C. elegans

chemotaxis circuit multi 0 15 Lou et al. (2014)

Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct

sensorimotor strategies driven by the AFD thermosensory neurons multi 0 15 Luo et al. (2014)

A dictionary of  behavioral motifs reveals clusters of  genes affecting

Caenorhabditis elegans locomotion single 30 15 Brown et al. (2013)

Locomotion analysis identifies roles of  mechanosensory neurons in

governing locomotion dynamics of C. elegans single 0 20 Cohen et al. 2012

Experiments and theory of  undulatory locomotion in a simple

structured medium single 5 25 Majmudar et al. (2012)

High-throughput behavioral analysis in C. elegans multi 240 60 Swierczek et al. (2011)

Dimensionality and Dynamics in the Behavior of C. elegans single 1 60 Stephens et al. (2008)

Controlling interneuron activity in Caenorhabditis elegans to evoke

chemotactic behaviour multi 1 60 Kocabas et al. (2012)

Mechanistic analysis of  the search behaviour of Caenorhabditis elegans single 1 60 Salvador et al. (2014)

Directional Locomotion of C. elegans in the Absence of  External Stimuli multi 0 80 Peliti, Chuang, and Shaham (2013)

The Geometry of  Locomotive Behavioral States single 0 240 Gallagher et al. (2013)

Dietary choice behavior in Caenorhabditis elegans. single 120 480 Shtonda and Avery (2006)

Long-term imaging of  circadian locomotor rhythms of  a freely crawling

C. elegans population multi 0 5760 Winbush et al. (2015)

Table A.3. Published worm tracking protocols. This table shows which papers are
included in our survey of published protocols in the same order that they occur in
the figure (Fig. 3a).
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Figure A.1. Performing multiple operations on the network. a) The order in which
operations are performed can influence how tracks are reconstructed. The first exam-
ple shows how a consolidation could compete with a collision. The second example
shows how inferring arcs can compete with pruning. b) Iterative network operations
increase the duration in which each individual is followed and reduce the complex-
ity of the entire network of track fragments. All nodes for the same individual are
colored in black. The shrinking red and blue boxes show how two groups of nodes
are combined through successive rounds of simplification. The darker the color, the
longer the track it represents.
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APPENDIX B

Supporting information to Chapter 3

B.1. Supplementary Methods

Minimizing Jitter. Jitter is a phenomenon that can be reduced but never completely re-

moved. However, it can be greatly reduced with the proper hardware, such as an optical table,

a mechanical hold on the worm’s plate, and very sturdy camera mount. Although our setup

has gone through several refinements, it still produces a fair amount of  jitter. To minimize

jitter from the hardware side, we placed the system on an inflated bicycle tire that acts as a

vibration dampener. We also strengthened the mounting system that held the cameras in place

above the plates. If  I were to add any additional improvements to this system, one would be

to drill holes in the bottom of  the incubator so that the plate and camera stand could remain

inside the incubator while standing directly on the floor. One further improvement would be

to construct a plate holder that firmly gripped it into position.

Minimizing background subtraction errors. This problem arises when worms are

incorrectly identified against the background of  the recording. From a hardware standpoint,

I was able to reduce the effects of  mistaken shapes by (1) using an even bacterial lawn, (2)

standardizing lighting, and (3) zooming in on the animals. The bacterial lawn we settled on

covers the entire viewing area (bacterial lawns often have a thicker edge that makes it easier to

find and lose animals) and is slightly thinner than the standard plating method.
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Removal of  Distorted Shapes. From a software perspective, I came up with several

criterion to detect mistaken shapes and exclude them from the time-series we were analyzing. I

noticed that the default centerline was untrustworthy in a couple situations. If  we could reliably

detect and exclude the false information, that would be amazing. I wanted my calculations

from the shapes to compare against them accurately. I implemented a thinning algorithm that

extracts a row of  pixels in the center of  a shape. However, this fails when the worm shapes

are distorted to have arms. To address this issue, we came up with a heuristic to remove all

false arms. Specifically, at any branch point, the algorithm removes the shortest branch. What

is left is usually the correct worm centerline. Now we have something that we can compare

against the multi-worm tracker’s (MWT) centerline. When the worm coils into a closed loop,

the MWT centerline arbitrarily picks a straight line through the circle. However, our algorithm

gives just a few points that are in the middle of  the circle. When the two center-lines diverge,

we know that something is wrong with the shape.

The actual size of  a worm (number of  pixels2) turned out to be remarkably unhelpful. The

size of  the worms changes a lot with minor changes in lighting conditions. The length of  the

centerline, however, is much more stable. This knowledge informed our other criterion: when

the worm is abnormally long or short, something is wrong with the shape. The same is also

true for width, but because width is very time consuming to calculate and the length is not,

we are leaving it out for now.

Using the length of  the centerline as our criterion, we have a full time-series of  shapes

for the animal. Minor problems (like arms) are removed, and major problems are excluded.

If  the major problems are very short, (sub fraction of  a second) we can interpolate what the
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correct shape would have been in that time, if  not, we leave the segment excluded and perform

calculations on each segment independently later.

Quantifying Speed and Acceleration. From a computational side, we happened to be

using a setup that is highly susceptible to jitter. The higher the frame rate of  your recording, the

larger jitter appears in relation to the magnitude of  the worm’s slow, methodical movement

across the plate. To combat this, I also implemented a set of  computational corrections to

remove the jitter. The primary tool used to remove jitter is moving average smoothing (in

some tests this works just as effectively as polynomial smoothing). A very tiny displacement,

which occurs fast enough, still appears to be very rapid worm movement. Thus, one effective

tool for removing jitter is to down-sample the frame-rate and throw away information. While

effective, I opted for another solution that maintained most of  the data at a high (10 Hz)

frame rate. I found that the combination of  smoothing the X, Y positions before calculating

speed and then smoothing the speed calculations after they had been calculated resulted in the

most truthful versions of  the speed time series. While acceleration may still contain valuable

insights, it squares any noise from jitter. Real signal is minuscule compared to the noise and,

lacking a foolproof  test, I discard the acceleration measurements rather than trust the noise

can accurately be removed from the signal.

Quantifying Orientation and Angular Velocity. After many attempts, I discarded the

idea of  extracting the animal’s orientation from its centroid movement. Although this is widely

used in the literature, it is exclusively used when the shape data is not available. The shape

of  the worm provides a much more stable orientation that is almost completely unaffected by

jitter.
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Classifying Forward and Reverse Crawling. Many of  the most fundamental aspects

of  worm motion rely on knowing if  the worm is traveling forward or backward. To do this

accurately, we need an algorithm to determine which side of  the worm is the head and which

end is the tail. Visually, this is apparent because the head is more rounded than the tail, and

tapers to a very fine point. Neither of  these approaches is appropriate from our data. The

worm’s shape is not given in sufficient resolution to capture if  one end or the other is rounder.

Similarly, only the outline is captured so recognizing the pharynx is not possible.

My first thought was to use the direction of  movement as my primary heuristic. That the

worm usually travels forwards. However, this does not appear to be very good since I am

analyzing several sections separately. Some of  these sections only last for a few minutes, and

the worm may indeed mostly travel backward during this time. The most reliable detection

mechanism I have found at low resolutions is to look at which end of  the worm moves side

to side more. The head, because of  forging, is constantly moving side to side. The tail, occa-

sionally does for steering; however, it does not show any of  the constant motion that the head

of  a feeding animal shows.

Aging Experiments. Animals are synchronized using a one-hour egg lay and raised under

standard conditions. Plates for recording behavior are prepared with an evenly spread out lawn

of  OP50 inside a copper enclosure. After the first recording, the animals are always in these

conditions.

Constructing a Network. An inverse Euclidian distance of  each feature vector gives a

fully connected network with an edge weight proportional to similarity. Every distance mea-

surement is converted to a link with a weight of 1/distance, creating a weighted unidirectional
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network with all-to-all connections. To remove links that are statistically insignificant, we re-

move weak links using an algorithm to extract the significant links /citeserrano2009extracting.

This creates the final network of  behavioral similarities. Since a much smaller number of  links

are left, community detection can be performed more efficiently, and often more accurately.

We use the info-map routine for community detection.
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APPENDIX C

A WALDO User Manual and Quickstart Guide

C.1. Quick Start Guide

Worm Analysis for Live Detailed Observation, or WALDO, was designed with two primary

functions in mind (1) to assess the quality of  your data aquisition setup and (2) to remove the

disruptions in tracking individual worms by correcting many types of  imaging errors that occur

during real time processing. This overview covers the basics of  using WALDO to cleaning

data generated using the Multi-Worm Tracker (MWT). To jump right into the core functionality

of  WALDO, the quick start guide assumes that you have installed WALDO and MWT (see

section C.2) and already have several recordings created by the MWT. To open the WALDO

graphical user interface, click the guiwaldo.exe icon.

C.1.1. Selecting Directories

The opening window (section C.3.1) allows you to select the directory that contains the record-

ings from MWT and the directory you want to store all of  WALDO’s results. You can also

adjust WALDO’s parameters using the configuration button (see C.3.2) or run WALDO in
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Figure C.1. An Overview of Steps Involved in Running WALDO

batch-mode but these are optional and not recommended for beginners. Click the ‘next’ but-

ton to proceed. If  you feel that you want to redo any of  the previous steps, hit the back button

until you get to the section you want to change.

C.1.2. Selecting Recordings

Once you select a directory, you can specify which recordings you want WALDO to analyze

(section C.3.3). The currently selected recording will be marked blue, invalid recordings are
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marked red, and recordings that have already been processed are marked green. Click the

‘Next’ button to process the recording you have selected.

C.1.3. Select Threshold and ROI

After the recording has been loaded, you are shown two graphs and an image of  the plate so

you can provide (1) a pixel-intensity threshold and (2) a region of  interest inside the image.

These two pieces of  information allow WALDO to interpret how accurately the recording’s

images reflect the data recorded by the Multi-Worm Tracker. The pixel intensity threshold is

selected by clicking on either of  the graphs on the left. The region of  interest is selected by

selecting if  you want a polynomial or circular region of  interest by clicking the buttons above

the image and then by specifying the ROI on the image below (see section C.3.5). When you

are satisfied with both the threshold and the ROI click ‘Next’.

C.1.4. Interpreting Scores

WALDO will calculate and display a set of  four metrics to judge how well the image match

MWT’s data (section C.3.5). The two most important metrics we use to score recordings are

‘Good Fraction’ and ‘Coverage’. ‘Good Fraction’ shows the fraction of  the worms MWT

reported were actually found in the images by WALDO. ‘Coverage’ shows how many of  the

worms found by WALDO in the images were also reported in the MWT tracking data. If  these

scores are two low, then the quality of  data in this recording is poor and WALDO will not allow

you to continue. If  this occurs, we recommend working through our troubleshooting section

of  this guide (section C.4.5). Otherwise, click ‘Next’ to begin cleaning your data.
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C.1.5. Clean Data and See Results

Progress will be displayed in a series of  progress bars shown in a pop-up window and in a bar

graph that will appear and then update in the main window (section C.3.6). When WALDO

has finished running, it will write a set of  output files, generate several report tables, and display

a graph showing how well tracks have been combined (section C.3.7). The cleaned data files

will be present inside the directory you specified in the opening window. Most of  the files are

written in the same format used by MWT, however some files contain additional information

such as which tracks were created by collisions. We recommend reading about the output files

in order to pull out what information is relevant to your research (see section C.3.8).

C.2. Installation

C.2.1. Installing a compiled version of WALDO

The only thing you need to do to install WALDO is to download the zipped folder (https://

amaral.northwestern.edu/resources/software/waldo). After you unzip the folder,

you can run waldo by double clicking on the guiwaldo.exe application. If  you plan on running

WALDO more frequently, we heavily recommend you create a shortcut for guiwaldo and

placing it on your desktop.

C.2.2. Installing WALDO from source

The source code for WALDO is currently being hosted on bitbucket (https://bitbucket.

org/peterbwinter/waldo). After installing mercurial (https://mercurial.selenic.

com/), the WALDO source code can be installed using the command: ‘hgclonehttps:
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//peterbwinter@bitbucket.org/peterbwinter/waldowaldo’ Once the repository is

cloned, you can launch WALDO’s graphical user interface with the command:

`python waldo/code/guiwaldo.py'

C.2.3. Installing Multi-Worm Tracker

WALDO is currently only configured to process data that is formatted like Multi-Worm Tracker’s

generated output. The MWT project website is http://sourceforge.net/projects/

mwt/. After downloading a zip file from the website will include the MWT source code as

well as multiple documentation files. Follow the instructions in the MWT instillation guide.

C.3. Reference

C.3.1. The Opening Window

This is the first window that will open. From here, you must select the directory that contains

your MWT data, specify the directory you WALDO will save output to. You can optionally,

select whether to run in batch or normal mode, or open the configuration window to change

WALDO’s settings.

The MWT-Data Directory (Raw Data). This is the path to a directory MWT has created

one or more recordings. Don’t worry about selecting which recordings you want to process,

that’s the next step.

The WALDO-Data Directory (Project Data). This allows you to specifying your project

directory, in which waldo will save all cleaned information (see organizing your data for ter-

minology and tips).

http://sourceforge.net/projects/mwt/
http://sourceforge.net/projects/mwt/
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Figure C.2. The Opening Screen.

Open the Configuration Window. This button opens the configuration window (see

section C.3.2). From the configuration window, you can change and save most of  WALDO’s

settings. These settings worked well for our analysis pipeline, however, most of  the settings

used in waldo processing can be tweaked and fine tuned in order to create better results for

your data.

Activate Batch Mode. There is one additional check box that specifies if  you would like

to run waldo in regular mode or batch mode. Regular mode lets you select one recording at

a time. Batch mode allows you to specify a group of  recordings that should be analyzed one
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after the other. We recommend keeping away from batch mode until you can validate if  the

lighting and image-acquisition setup recording setup.

C.3.2. The Configuration Window

The settings in WALDO’s configuration file are exclusively for data cleaning rather than record-

ing. These settings are divided into two columns Consolidate and tape. The first column consol-

idate corresponds to settings for combining several node fragments. The second column tape

connects two disconnected nodes via an arc.

The consolidate settings determine how split blobs will be merged into one. Assimilate size the

amount of  time that is allowed to pass between the initial and final nodes in the consolidation

step. Offshoot defines the amount of  time that is allowed before an offshoot is removed during

the Pruning step. The last two settings Split Abs and Split Rel provide parameters for faster

versions of  the consolidation step that acts on the most common types of  false splitting that

occurs in the data. Split Abs gives an time based threshold such that any splits that are less

than this amount of  time are automatically merged. Split Rel gives a relative threshold that

states if  the split tracks exist less than a given fraction of  the tracks sandwiching them, then

they should be merged.

To understand the settings in the tape column consider that we are trying to create arcs

between a track that ends and a track that begins such that a worm could have crawled from

the first position to the second. In order to find situations like this, we compare the positions

for every pair of  tracks in which the time between the first track ending and the second track

starting, δt, has less than the number of  frames denoted in the Frame Search Limit variable.
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This variable does not determine if  an arc is created, it only determines if  candidates will be

further considered for evaluation. In order to evaluate if  a worm could have plausibly crawled

from the first position to the second, we calculate the max speed observed while tracking the

other worms in the recording. This distance is given by the following formula:

[Estimated Max Speed] = [observed max speed] ∗ [max speed multiplier]

[Max distance allowed] = δt ∗ [Estimated Max Speed] + [Shakycam Allowance]

Since the observed max speed may not be the true maximum speed, we allow for some

extra leeway by multiplying our observed max speed with a scaling factor called Max Speed

Multiplier to give us a more generous estimate. Very short time-spans can cause us to rule

out very small distances that are covered purly because of  vibrations in image aquisition. To

prevent these from being ruled out, we added the Shakycam Allowance factor that specifies a

small amount of  pixels that a worm is allowed to cover instantaneously. This prevents us from

ignoring obvious connections. This formula defines only which pairs of  tracks will considered

as candidates. Any ending track will only be connected to another track if  it has the smallest

distance factor and the distance factor is less than:

[distance factor] = δd ∗ δt
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WALDO stores all it’s default parameter values in a configuration file in the current user’s

home directory called ‘waldo_config.ini’. In adition to changing the values through WALDO’s

configuration window, the values can be modified by manually changing the configuration file

with a text editor. However, if  you do, be sure to follow formatting rules for json files (see

http://en.wikipedia.org/wiki/JSON).

C.3.3. Selecting a Recording

Figure C.3. Choosing a Recording to Analyze.

http://en.wikipedia.org/wiki/JSON
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This window is intended for selecting which recording you want to process. It contains

a large table displaying all directories inside the MWT-Data Directory. The columns are the

directory name (usually a time-stamp), the experiment name, and the duration of  recording

in seconds. Recordings are selected by clicking on the correct row. The row of  the selected

experiment is colored blue. Rows that list invalid directories are colored red. Rows that list

directories that already have WALDO output files are colored green.

The Directory (or Recording Time-stamp). The first column is the name of  the

recording’s directory. By default, MWT, will name these directories using the following format:

[year][month][day]_[hour][minute][second]. For example the name 20150528_193535

would correspond to the date 2015/05/28 and time 19:35:35. In the table, these directories

are organized in reverse chronological order. If  you chose a MWT-Data Directory with con-

tents other than MWT recordings, those will be visible in the table but colored red to show

that they are invalid selections.

The Recording Name. The second column is the recording’s given name. This is de-

termined by what the recording was named in MWT before the recording was started. We

recommend including the quantity, age, and strain of  the animals used as well as some set of

keywords that correspond to the set of  experiments they belong to.

The Recording Duration. The last column shows how many seconds long the recording

is. This is helpful for avoiding recordings with aberrant duration. WALDO does not include

any options to delete data so if  you want to remove any directories that are irrelevant for

data-analysis, you will have to manually move or delete those directories.
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C.3.4. Selecting a Threshold and ROI

This window is designed to select a pixel intensity threshold and a region of  interest (ROI).

The pixel intensity threshold is allows WALDO to discern worms from background during

the scoring process. The region of  interest is used both during scoring and analysis in order to

focus the analysis on just the relevant portion of  the image. To aid in making these selections

WALDO displays two graphs and an image taken during the recording.

The pixel intensity threshold is selected by clicking on either of  the two graphs on the

left half  of  the window. The x-axis on both graphs show a range of  thresholds available for

selection. The top graph shows the number of  blobs detected in the image at each threshold.

The bottom graph shows the mean size of  each blob at each intensity threshold. By clicking

on either graph, the position along the x-axis will be stored as the desired threshold and blue

lines will show the outlines corresponding to the object picked up.

In order to detect blobs, WALDO creates a background image that takes the maximum

pixel intensities at each position from a subset of  images in the recording. This ensures that

when a worm crawling over a portion of  the plate, it is not included in background image.

Any portions of  the image for which difference between image and the background is larger

pixel-intensity threshold are considered to be blobs and outlined in the image on the right of

the window. If  you do not like your selection, click on the graphs again and the new value will

be chosen.

The region of  interest is specified by selecting whether you want a circle or a polygon

from the two buttons above the image. If  circle is selected, you can define the circle by clicking

on three locations on the image that should be at the edge of  the ROI. If  polygon is selected,
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then each click places one of  the polygon’s corners. The clicks should be performed in a

row. The selected region of  interest will be highlighted in red. If  you do not like the selected

region, you can redefine the area by clicking on the button to select the correct type of  ROI

and specifying where it is in the image. When you are satisfied with your selections, click

‘Next’.

Figure C.4. Selecting the Threshold and ROI.
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C.3.5. The Score Card

Scoring provides an independent assessment of  the images in order to evaluate how well MWT

is picking up blobs. The scoring system is based on five metrics: ‘Contrast Ratio’, ‘Contrast

Diff ’, ‘Good Fraction’, ‘Accuracy’ and ‘Coverage’.

Contrast Metrics. The first two metrics, ‘Contrast Ratio’ and ‘Contrast Diff ’, are the

based on the contrast between objects and background. ‘Diff ’ is the difference between the

average pixel intensity of  tracked objects in relation to the average pixel intensity of  the image

background inside the ROI. ‘Contrast Ratio’ shows the ratio of  those two values. These values

can be helpful in determining whether your animals appear dark enough against the image

background to be properly tracked. If  this contrast is poor, it is likely that you are not picking

up some of  your animals and/or temporarily loosing track of  them during the recording.

Blob Detection Metrics. The next two metrics, ‘Good Fraction’, and ‘Coverage’, all

compare the blobs that were picked up during WALDO’s image analysis with the blobs that

are present in MWT’s blob files at the time the image was taken. ‘Good Fraction’ is the fraction

of  blobs that MWT says are present that directly match up with blobs found by WALDO.

All of  these numbers should be as close to 1.0 as possible. If  ‘Good Fraction’ is significantly

lower than ‘Coverage’ then too many blobs are being picked up by MWT. If  the opposite is

true, than worms are being missed by the MWT. Tips on adjusting your setup can be found

in the Troubleshooting section.

General Considerations. In order to speed up the scoring process, WALDO only eval-

uates the images that are closest to the first quarter, middle and last quarter of  the recording.

These three images give us a view of  how well blobs are picked up during different times in
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the recording process. All comparisons are based on the pixel-intensity threshold and the re-

gion of  interest values you entered in the previous step. If  you feel your previous inputs were

poorly chosen, hit the ‘back’ button and enter more fitting parameters.

Figure C.5. A Recording’s Scorecard.

C.3.6. Running WALDO

After the scoring section is complete WALDO now has enough information in order to try

and correct mistakes. This is by far the most time consuming step in the process. Depending

on how long your recording is, how many worms were recorded, and how many spurious

blobs were acquired during the recording, WALDO can take anywhere between 10 minutes to

several hours to finish processing the data. During this time a window with progress bars will

be continually updated and either an image or a graph will be displayed, depending on which

stage of  analysis you are currently in.

C.3.7. Results

After WALDO has finished running, it automatically generates a graph and several tables that

illustrate how effective it was at cleaning the data and combining track fragments. The tables

and graphs can be accessed by clicking on the tabs labeled Results, Track Counts, Network

Overview, and Track Fragmentation. Each of  these tables and figures provides a different
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Figure C.6. The WALDO Display while Running.

view of  the process. Results gives a fast visual overview of  WALDO’s performance. Track

Counts gives a detailed table as to how many tracks there are at different lengths. Network

Overview shows some statistics about the network structure. Track Fragmentation shows

tables explaining how tracks were found and how tracks were lost. If  you click the ‘Finish’

button at the bottom, you will be taken back to the ‘Recording Selection’ table and given the

option of  selecting another recording for cleaning.

C.3.7.1. Results Figure. The first and second columns of  this figure summarized the

amount to track fragmentation that is present in the MWT data and the cleaned data from

WALDO respectively. The colored regions represent when a blob is being tracked. Each row

indicates an individual track that cannot be clearly connected to any of  the other tracks present.

Three different rows, from top to bottom show tracks that are longer than 20 minutes, between
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five and twenty mintues, and tracks that are less than five minutes. If  the blob being tracked

does not move more than one body length it is excluded from this figure. This constraint

removes most spurious objects, since blobs that are not worms will not move. However, this

constraint also prevents most of  the very short track fragments from appearing, as any track

fragment that exists for less than one second cannot travel the required distance. We ignore

these fragments as they do not contain much behavioral information.

Figure C.7. An Overview of WALDO’s Performance.

C.3.7.2. Track Counts. This tab shows a table that explicitly shows how many tracks

of  each length are present at each stage of  cleaning and disambiguation. The columns ‘Phase’
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and ‘Step‘ indicate which part of  the process has just occurred. There are several phases in

WALDO’s process. Each phase consists of  one or more steps. The phases that occur while

running WALDO are ‘Input’, ‘pre-cleaning’, and several repeated iterations called ‘iter 1’, ‘iter

2’, etc. The ‘Input’ phase is really just showing the raw data that was created by MWT. The

‘pre-cleaning’ phase has two separate steps. The first step, called ‘roi’, it removes all nodes

that only exist outside of  the region of  interest. The second step, called ‘blank’, removes any

tracks that contain no position, shape, or connection to the greater network. Due to MWT’s

real-time processing, there are often a hand-full of  tracks that fit this criterion. The last phases

consist of  several iterations of  the same four steps: ‘resolve collisions’, ‘prune’, ‘consolidate’,

and ‘infer gaps’. These steps are covered in more detail inside the manuscript.

There are several common trends that allow a user to evaluate if  these numbers are showing

reasonable performance. The number of  total nodes should go down at every point in the

process. The column ’total-tracks’, show how many tracks are present in the data at each step.

The final two columns, ‘duration-mean’ and ‘duration-std’ indicate the mean and standard

deviations of  track lengths. The columns ‘> 10’, ‘> 20’, ‘> 30’, ‘> 40’ , ‘> 50’ all indicate

how many tracks exist that are longer than a certain amount of  minutes. The ‘pre-cleaning’

phase should reduce the numbers of  tracks in every column, including long duration tracks.

This is because some spurious blobs from outside of  the region of  interest might have been

tracked for a significant portion of  the recording. All of  the subsequent steps should show

increases in all categories except ‘total-nodes’. Because the number of  tracks that are longer

than fifty minutes in column ‘> 50’ are also greater than ten minutes. The column ‘> 10’

includes all the tracks that are also longer than 20, 30, or any of  the other cut-offs. In order



148

to calculate the number of  tracks that are between 10 and 20 minutes long, you would have to

subtract the ‘> 20’ column from the ‘> 10’ column. Altogether, this provides a global view

of  how much cleaning is going on in a WALDO process.

C.3.7.3. Network Overview. This tab shows a table that explicitly shows general prop-

erties about the network of  track relationships that WALDO uses to curate the data. This

table, like the ‘Track Duration’ table has the columns ‘Phase’, ‘Step’, and ‘total-nodes’ as the

first three columns. For more details on these columns refer to the previous section. The

column ‘connected-nodes’ gives the number of  nodes that have at least one arc connecting

them to another node. This gives an overview of  hos many nodes have some sort of  inter-

action with another nodes. The ‘isolated-nodes’ column shows the numbers of  nodes that

have no connections. These nodes will only be joined with other tracks through the ‘infer

gaps’ step. The ‘giant component’ column shows how many nodes are in the biggest group of

connected tracks. Typically there is one group of  interacting nodes that is much larger than all

the others. If  this group is too heavily interconnected, it can be difficult to determine which

nodes belong to which individuals. Lastly, the column ‘# of  components’ shows the number

of  disconnected groups of  nodes there are. Most of  the components in # of  components

will be singletons that are counted in the ‘isolated nodes’ category. These metrics give some

indication as to how complicated the full network of  connections is that WALDO is trying to

untangle, without directly visualizing the network.

C.3.7.4. Track Fragmentation. The upper and lower tables respectively show how

tracks were lost and how tracks were found. The reasons for a track being lost or found are
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enumerated in each column. The rows indicate roughly how long the tracks in question are.

I’ll explain the top table first.

The first column ‘disappear’ indicates that no clear reason could be assigned to why a

worm was dropped by MWT. This typically occurs for two reasons an animal crawls into a

region with poor contrast and background subtraction fails to find it against the background,

or the animal’s size changes enough such that it falls outside of  the range you specified in the

MWT settings. Either way, the data suddenly looses the blob somewhere inside the region of

interest.

The next two columns, ‘split’ and ‘join’, indicate whether a track was lost because it’s blob

split into multiple smaller blobs or because it collided with another blob and fused into a larger

blob. At this point, we can’t differentiate between collisions and false splits, but you can have

a strong guess as to which is the predominant factor based on other experimental factors. If

you have a large amount of  worms relative to a small area, most ‘splits’ and ‘joins’ will be

caused by collisions between animals. If  you have fairly low resolution for each animal and

heavy interference from the image background, then most of  these are probably caused by

false splits that fragment a worm’s body into two or more blobs.

The column ‘recording-finish’ indicates that a track ends because the recording stops. This

is clearly the most desirable reason to loose track of  an animal.

The final two columns ‘image-edge’ and ‘outside-roi’ indicate that the blob was lost be-

cause it crawled to the edge of  the image or outside of  the denoted region of  interest. De-

pending on whether you set up you experiment with a barrier to prevent worm’s from crawling
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outside of  the field of  view, these numbers can range from near zero to the most prevalent

reasons for loosing track of  an animal.

The bottom table gives all the analogous reasons for detecting a new track that were speci-

fied as for loosing a track. Several columns are named slightly differently. ‘disappear’ is listed as

‘appear’, since, from WALDO’ point of  view, a new blob spontaneously pops into existence.

‘recording-finish’ is changed to ‘recording-begins’ to denote any tracks that are discovered

within the first 30 seconds of  recording. Otherwise all columns list reasons for finding new

tracks that are completely analogous to their counterpart reason for loosing a track.

Figure C.8. The Track Fragmentation Report.
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C.3.8. Output Files

For every recording that WALDO scores or cleans, WALDO creates a new directory in the

WALDO-Data Directory. The output directory contains two sub-directories called ‘blobs_files’

and ‘waldo’ and files that correspond to each of  the summary tables that are shown in the GUI

when WALDO finished processing a recording. The ‘blob_files’ directory contains cleaned

versions of  the MWT files in the MWT formats.

The ‘waldo’ directory contains all the files recording the steps WALDO takes while clean-

ing data as well as various pieces of  information that are used by WALDO during processing.

The files in this directory always start with the recording’s ID number and then end with the

type of  data contained inside.

Most of  the output files are stored as comma separated values or CSVs. However some

files are in the json file format. Either way, if  you want to look inside of  the files, use a text

editor or any other program that can view plain text. These files will be generated at various

points while WALDO is running. If  WALDO fails or has not finished running, then not all

the output files will be created.

C.3.8.1. Accuracy. The ‘accuracy’ file is used to store data about how well waldo’s image

processing compares to the tracks MWT collects data. This file compiles information from the

‘matches’ and ‘missing’ files into an overview of  how well each individual image performed.

columns data type description

false-neg integer number of false negatives

false-pos integer number of false positives
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columns data type description

frame integer frames since start of recording

time float time from start of recording in seconds

true-pos integer number of true positives

C.3.8.2. Bounds. The ‘bounds’ file contains the bounding box that contains the full time-

series of  centriod positions for each blob picked up by the MWT. This provides a good short-

hand reference to estimate how far an animal has moved and to evaluate if  it was ever inside

the region of  interest.

columns data type description

bid integer blob ID number

x_min float minimum value of the x centroid position

x_max float maximum value of the x centroid position

y_min float minimum value of the y centroid position

y_max float maximum value of the y centroid position

C.3.8.3. Starts and Ends. The ‘start’ file contains all necessary information for evalu-

ating how each track was found during a recording. The ‘ends’ file contains a matching set of

information regarding how the track was lost. This is the data used to create the ‘start report’

and the ‘end report’ shown in the ‘Track Fragmentation’ report.
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columns data type description

bid integer blob ID number

t float time from start of recording in seconds

x float centroid x position

y float centroid y position

f integer frames since start of recording

node_id integer ID number for a track/node in WALDOs network

id_change boolean if track started because of split or join

split boolean if track started because a blob split

join boolean if track started because two blobs touched

lifespan_t float number of minutes track lasts

on_edge boolean if track started by entering the image

outside-roi boolean if track started by entering the ROI

timing boolean if track started at the beginning of the recording

reason string most likely reason this track was found

C.3.8.4. Start and End Reports. These files contain a concise summary of  ends.

The data is an exact duplicate info from main folder ‘end_report’ and ‘start_report’. The table

below shows columns from the ‘start_report’. The ‘end_report’ has the same types of  values

corresponding to how tracks were lost.
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columns data type description

lifespan string number of minutes track lasts

unknown integer number of unclear starts

split integer number of tracks that start

join integer number of tracks that start because two blobs touch

timing integer number of tracks at the beginning of the recording

on_edge integer number of tracks that start by entering the image

outside-roi integer number of tracks that start by entering the ROI

C.3.8.5. Matches. The ‘matches’ file contains information on weather each of  MWT’s

blobs was matched against a blob picked up during WALDO’s image analysis. This gives

information used during the scoring process.

columns data type description

frame integer frames since start of recording

bid integer blob ID number

good boolean if the blob was found during WALDO’s image analysis

roi boolean if the blob was inside the ROI

join optional ID of another MWT blob matched against the same WALDO blob
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C.3.8.6. Missing. The ‘missing’ file contains information about blobs picked up during

WALDO’s image analysis that were not matched with any of  the blobs tracked by MWT.

columns data type description

id string an ID assigned to the missing object

f integer frames since start of recording

t float time from start of recording in seconds

x float centroid x position

y float centroid y position

xmin float minimum x coordinate for the blob shape

ymin float minimum y coordinate for the blob shape

xmax float maximum x coordinate for the blob shape

ymax float maximum y coordinate for the blob shape

next string ID of next object in this location

C.3.8.7. Moved. The ‘moved’ file provides a quick reference for roughly how far each

MWT blobs has moved. This is useful for quickly filtering out stationary blobs.

data type description

columns

bid integer blob ID number

Continued on next page
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data type description

bl_moved float the number of body-lengths a blob has moved

C.3.8.8. Node Summary. The ‘node-summary’ file contains information about the final

tracks generated by WALDO. It contains which track fragments were stitched together into

longer tracks. It also contains the bounding box that encompasses all the centroid positions

and it includes the start and ending times.

columns data type description

bid integer blob ID number

bl float body lengths

components string blob IDs in this track

f0 integer track start frame

fN integer track end frame

t0 float track start time

tN float track end time

x_max float maximum x coordinate for centroid

x_min float minimum x coordinate for centroid

y_max float maximum y coordinate for centroid

y_min float minimum y coordinate for centroid
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C.3.8.9. Report Card. The ‘report-card’ file contains all the data used to generate both

the ‘Track Counts’ and ‘Network Overview’ reports. This data is to give an overview of  how

well WALDO succeeds in generating long tracks following the same animal.

columns data type description

# components integer number of blobs used in this track

>10min integer number of tracks longer than 10 min.

>20min integer number of tracks longer than 30 min.

>30min integer number of tracks longer than 20 min.

>40min integer number of tracks longer than 40 min.

>50min integer number of tracks longer than 50 min.

connected-nodes integer number of nodes with arcs

duration-mean float the mean of all track durations

duration-med float the median track duration

duration-std float the standard deviation of track durations

giant-component-size integer number of nodes in giant component

isolated-nodes integer number of nodes with no arcs

moving-nodes integer number of nodes that move at least 1 body-length

phase string the general process WALDO is running

step string the specific task WALDO is running

total-nodes integer the number of nodes in the network

Continued on next page
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columns data type description

wm_0min float total worm-minutes that are in recording

wm_10min float worm-minutes in tracks longer than 10 min.

wm_20min float worm-minutes in tracks longer than 20 min.

wm_30min float worm-minutes in tracks longer than 30 min.

wm_40min float worm-minutes in tracks longer than 40 min.

wm_50min float worm-minutes in tracks longer than 50 min.

C.3.8.10. ROI. The ‘roi’ file contains information about which MWT tracks are inside

of  the region of  interest. The actual coordinates of  the region of  interest are stored in the

‘thresholddata.json’ file.

columns data type description

bid integer blob ID number

inside_roi boolean if the blob is inside the ROI.

C.3.8.11. Sizes. The ‘sizes’ file contains the median length and area of  each of  MWT’s

blobs. This data was initially considered in order to detect collisions, however, was not imple-

mented due to the large variability in size if  lighting conditions are uneven.
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columns data type description

bid integer blob ID number

area_median float median number of pixels in blob (pxls**2)

midline_median float median length of blob midline (pxls)

C.3.8.12. Terminals. The ‘terminals’ file contains the starting and ending positions and

times for each of  MWT’s tracks. This is used to connect tracks that were temporarily lost.

columns data type description

bid integer blob ID number

x0 float track start x coordinate

y0 float track start y coordinate

t0 float track start time

f0 integer track start frame

xN float track end x coordinate

yN float track end y coordinate

tN float track end time

fN integer track end frame

C.3.8.13. Threshold and Region of Interest. The pixel intensity threshold and

the region of  interest coordinates are stored in a file called ‘thresholddata.json’. Unlike the
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majority of  files it uses the json format for storing it’s data. Some values are only used when

a circular ROI is chosen and some values are only used when a polygon ROI is chosen.

variable data type description

threshold float the pixel intensity threshold

shape list the dimensions of the images aquired

r float the radius of the circular ROI

x float the x coordinate of the center of the circle

y float the y coordinate of the center of the circle

roi_type string either ’circle’ or ’polygon’

points list the x,y coordinates for each point in the polygon

C.4. Tips and Troubleshooting

C.4.1. Collecting and Organizing Your Data

When you use the Multi-Worm Tracker to collect data, it will create a directory used to store

all related files. We refer to this directory as ‘the recording’s directory’. Often, the best orga-

nizational strategy is to create one big directory that contains all the recordings you make with

Mulit-Worm Tracker. This big directory, is referred to as the ‘MWT-Data Directory’.

During the process of  collecting several hundred recordings, we left the raw data for every

recording inside the ‘Data Directory’, regardless of  which project or sub-project it belonged

to. WALDO is easiest to use if  this strategy is kept in mind, however, if  you are really collecting

a high volume of  recordings, it may be helpful to periodically archive older recordings.
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C.4.2. Adjusting and Saving WALDO Figures

I frequently use the icons under the image to zoom in on an object in the image to check

if  the boarder has been appropriately defined. This is accomplished by (1) clicking on the

magnifying glass icon under the image, (2) clicking and dragging your mouse across the image

to select a rectangle. The image should zoom in on the desired location. To zoom back out

you should click on the house icon underneath the image.

These icons are shown because WALDO uses matplotlib to render the images and graphs.

A more detailed description of  how to use each of  these icons can be found from the matplotlib

page: http://matplotlib.org/1.4.0/users/navigation_toolbar.html

C.4.3. Selecting Data: My recording is colored red

Invalid directories are colored red based on whether they include a ‘.summary’ file. Every

recording the MWT creates (without encountering errors) contains a file that ends with ‘.sum-

mary’. WALDO will not function if  no ‘.summary’ file is present.

If  there is more than one ‘.summary’ file, you either inadvertently copied that file twice, or

you put all the files from two separate recordings into the same directory.

C.4.4. Selecting Data: My directory is missing

This problem occurs if  you have not specified the correct Raw Data directory in the previous

step. Click back and select the directory that contains the experiment directory. For more

details see the previous section in the manual on selecting a Raw Data directory.

http://matplotlib.org/1.4.0/users/navigation_toolbar.html
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C.4.5. Improving Image Scores

If  the plate shifts or there are large changes in the bacterial lawn, some spurious objects may

be picked up. If  these problems occur in this background subtraction, the same problems are

likely to be in the MWT’s data and the experimental setup should be adjusted accordingly.

Objects are determined to be outside of  the region of  interest only if  their centroid position

falls outside of  the denoted region. Thus, if  a worm is only partially outside of  the region, it may

still be picked up. Due to the specific way the MWT operates, however, you may temporarily

lose track of  an individual if  it touches the edge of  the image or contacts a larger dark region

in the image such as a barrier or the light distortion from the plate meniscus.
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